| 注册
首页|期刊导航|电子科技|基于Transformer的多编码器端到端语音识别

基于Transformer的多编码器端到端语音识别

庞江飞 孙占全

电子科技2024,Vol.37Issue(4):1-7,7.
电子科技2024,Vol.37Issue(4):1-7,7.DOI:10.16180/j.cnki.issn1007-7820.2024.04.001

基于Transformer的多编码器端到端语音识别

Multi-Encoder Transformer for End-to-End Speech Recognition

庞江飞 1孙占全1

作者信息

  • 1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 折叠

摘要

Abstract

The current widely used Transformer model has a strong ability to capture global dependencies,but it tends to ignore local feature information at shallow layers.To solve this problem,this study proposes a method using multiple encoders to improve the ability of speech feature extraction.An additional convolutional encoder branch is added to strengthen the capture of local feature information,make up for the neglect of local feature information in shallow Transformer,and effectively realize the integration of global and local dependencies of audio feature se-quences.In other words,a multi-encoder model based on Transformer is proposed.Experiments on the open-source Chinese Mandarin data set Aishell-1 show that without an external language model,the proposed Transformer-based multi-encoder model has a relative reduction of 4.00%in character error rate when compared with the Transformer model.On the internal non-public Shanghainese dialect data set,the performance improve-ment of the proposed model is more obvious,and the character error rate is reduced by 48.24%from 19.92%to 10.31%.

关键词

Transformer/语音识别/端到端/深度神经网络/多编码器/多头注意力/特征融合/卷积分支网络

Key words

Transformer/speech recognition/end-to-end/deep neural networks/multi-encoder/multi-head attention/feature fusion/convolution branch networks

分类

信息技术与安全科学

引用本文复制引用

庞江飞,孙占全..基于Transformer的多编码器端到端语音识别[J].电子科技,2024,37(4):1-7,7.

基金项目

国防基础科研计划(JCKY2019413D001) (JCKY2019413D001)

上海理工大学医工交叉项目(10-21-302-413)National Defense Basic Scientific Research Program(JCKY2019413D001) (10-21-302-413)

Medical and Engineering Cross Project of University of Shanghai for Science and Technology(10-21-302-413) (10-21-302-413)

电子科技

1007-7820

访问量0
|
下载量0
段落导航相关论文