|国家科技期刊平台
首页|期刊导航|影像科学与光化学|非可控条件下基于深度神经网络的彩色图像光谱估计

非可控条件下基于深度神经网络的彩色图像光谱估计OACSTPCD

Spectral Estimation from Color Images Based on Deep Neural Network under Uncontrolled Conditions

中文摘要英文摘要

光谱反射比可以从彩色图像估计得到,目前基于彩色图像的光谱估计一般在可控条件下进行,即光源和彩色相机的拍摄参数等都是严格固定的,以确保引起相机响应值变化的主要因素仅是光谱反射比,从而可以准确建立相机响应值到光谱反射比的映射关系.但在非可控条件下,引起相机响应值变化的因素较多,增加了光谱估计的难度.本文借助深度神经网络强大的非线性拟合能力,基于残差神经网络设计了 一种深度神经网络,从彩色图像的RGB值估计光谱反射比.利用智能手机在非可控条件下采集了大量彩色图像,并通过5折交叉验证对所提出的网络进行了测试.结果表明,所设计的深度神经网络比已有的两种光谱估计算法获得了更高的光谱估计精度,因而可以更准确地实现非可控条件下基于彩色图像的光谱估计.

Spectral reflectance can be estimated from color images,and currently,spectral estimation based on color images is generally carried out under controlled conditions,that is,the light source and the camera settings of color cameras are strictly fixed,so as to ensure that the main factor causing the change of camera response values is only the spectral reflectance,so that the mapping relationship between camera response values and the spectral reflectance can be established accurately.However,there are many factors causing the variation of camera response values under uncontrolled conditions,which increases the difficulty of spectral estimation.In this paper,a deep neural network framework is designed based on the residual neural network with the help of its powerful nonlinear fitting ability to estimate the spectral reflectance from the RGB values of color images.A large number of color images were collected by smart phones under uncontrolled conditions,and the proposed network was verified by five-fold cross validation.The results show that the proposed deep neural network framework can achieve higher accuracy than two existing spectral estimation algorithms,which enables more accurate spectral estimation based on color images under uncontrolled condi-tions.

赵微;刘洋;陈建宇;莫庆伟;丁银萍;徐鹏

浙江农林大学暨阳学院,浙江诸暨 311800浙江老鹰半导体技术有限公司,浙江诸暨 311800

光谱估计彩色图像深度神经网络非可控条件

spectral estimationcolor imagesdeep neural networkuncontrolled conditions

《影像科学与光化学》 2024 (002)

83-88 / 6

国家自然科学基金(62005246);浙江农林大学暨阳学院科研发展基金(JY2018RC02,RC2021A09);浙江农林大学暨阳学院大学生创新训练计划项目(202303);国家级大学生创业训练计划项目(202313283003)

10.7517/issn.1674-0475.231011

评论