| 注册
首页|期刊导航|高师理科学刊|基于注意力机制与YOLOv5s的轻量化农作物害虫检测方法

基于注意力机制与YOLOv5s的轻量化农作物害虫检测方法

张剑飞 张圣贤

高师理科学刊2024,Vol.44Issue(3):36-42,50,8.
高师理科学刊2024,Vol.44Issue(3):36-42,50,8.DOI:10.3969/j.issn.1007-9831.2024.03.006

基于注意力机制与YOLOv5s的轻量化农作物害虫检测方法

Lightweight crop pest detection method based on attention mechanism and YOLOv5s

张剑飞 1张圣贤1

作者信息

  • 1. 齐齐哈尔大学 计算机与控制工程学院,黑龙江 齐齐哈尔 161006
  • 折叠

摘要

Abstract

To address the low accuracy and slow speed of manual pest detection in natural environments,a lightweight object detection algorithm based on attention mechanism and YOLOv5s is proposed.Firstly,the Ghost convolution is used to replace the vanilla convolution in YOLOv5s,obtain a lightweight backbone feature extraction network.Secondly,a weighted bi-directional feature fusion mechanism is integrated into YOLOv5s to efficiently perform bidirectional cross-connections and multi-scale feature fusion.Finally,the coordinate attention mechanism is added to the backbone network to enhance the model's focus on spatial information.Compared with YOLOv5s,the proposed algorithm achieves a 2.1%improvement in the mean average accuracy on the IP102 crop pest detection dataset,with a reduction of 44.6%in the number of model parameters and 44.3%in the amount of computation,and a detection speed of 64.8 FPs.The experimental results show that the lightweight object detection algorithm based on attention mechanism and YOLOv5s not only improves the accuracy of crop pest detection,but also significantly reduces model parameters and computational complexity,which can meet the application requirements of crop pest detection.

关键词

深度学习/害虫检测/注意力机制

Key words

deep learning/pest detection/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

张剑飞,张圣贤..基于注意力机制与YOLOv5s的轻量化农作物害虫检测方法[J].高师理科学刊,2024,44(3):36-42,50,8.

基金项目

齐齐哈尔市科技计划重点项目(ZDGG-202203) (ZDGG-202203)

黑龙江省教育厅基本科研业务费项目(145209806) (145209806)

高师理科学刊

1007-9831

访问量0
|
下载量0
段落导航相关论文