| 注册
首页|期刊导航|哈尔滨工程大学学报|基于更快区域卷积神经网络的多视角船舶识别

基于更快区域卷积神经网络的多视角船舶识别

程静 王荣杰 曾光淼 林安辉 王亦春

哈尔滨工程大学学报2023,Vol.55Issue(10):1832-1840,9.
哈尔滨工程大学学报2023,Vol.55Issue(10):1832-1840,9.DOI:10.11990/jheu.202204041

基于更快区域卷积神经网络的多视角船舶识别

Multiview ship recognition based on the faster region convolutional neural network

程静 1王荣杰 2曾光淼 1林安辉 2王亦春2

作者信息

  • 1. 集美大学 轮机工程学院,福建 厦门 361021
  • 2. 集美大学 轮机工程学院,福建 厦门 361021||福建省船舶与海洋工程重点实验室,福建 厦门 361021
  • 折叠

摘要

Abstract

The appearance of ships varies greatly under different views,and the complex ocean environment increases the difficulty of obtaining multiview ship images.In this paper,the self-made multiview images of different types of ships were used as datasets to train the faster region convolutional neural network(faster R-CNN)model.Then,we evaluated the recognition performance of the faster R-CNN model for ships of different views by using the mean F1 score,mean accuracy,and mean log-average miss rate as evaluation indexes.Furthermore,the recognition ability of the faster R-CNN to different levels of quality and background images was analyzed by identifying the F1 scores and log-average miss rates of different ships.The experimental results showed that the mean F1 score,mean accuracy,and mean log-average miss rate of the faster R-CNN were 0.696 9,92.88%and 8.34%,respectively.The faster R-CNN has high recognition ability when processing multiview ship images;however,the same ability is significantly reduced when processing low-pixel images in foggy or dim environments.

关键词

多视角/船舶识别/视觉图像/更快区域卷积神经网络/目标检测/特征提取/深度学习/低分辨率图像

Key words

multiview/ship recognition/vision image/faster region convolutional neural network(faster R-CNN)/object detection/feature extraction/deep learning/low resolution image

分类

信息技术与安全科学

引用本文复制引用

程静,王荣杰,曾光淼,林安辉,王亦春..基于更快区域卷积神经网络的多视角船舶识别[J].哈尔滨工程大学学报,2023,55(10):1832-1840,9.

基金项目

国家自然科学基金项目(51879118). (51879118)

哈尔滨工程大学学报

OA北大核心CSCDCSTPCD

1006-7043

访问量0
|
下载量0
段落导航相关论文