| 注册
首页|期刊导航|航空兵器|基于L-FPN的无人机上小目标识别模型轻量化方法

基于L-FPN的无人机上小目标识别模型轻量化方法

魏昊坤 刘敬一 陈金勇 楚博策 孙裕鑫 朱进

航空兵器2024,Vol.31Issue(1):97-102,6.
航空兵器2024,Vol.31Issue(1):97-102,6.DOI:10.12132/ISSN.1673-5048.2023.0127

基于L-FPN的无人机上小目标识别模型轻量化方法

A Lightweight Method for Small Object Detection Models on Unmanned Aerial Vehicles Based on L-FPN

魏昊坤 1刘敬一 1陈金勇 1楚博策 1孙裕鑫 2朱进1

作者信息

  • 1. 中国电子科技集团公司第五十四研究所 航天信息应用技术重点实验室,石家庄 050081
  • 2. 光电信息控制和安全技术重点实验室,天津 300308
  • 折叠

摘要

Abstract

Oriented object detection in remote sensing images is a current research hotspot.Due to the var-ying heights and equipment used in capturing remote sensing images,the ground sampling distance(GSD)of each image also varies,causing many small objects to be easily overlooked.Existing rotated object detection al-gorithms are mainly aimed at multi-scale object detection in general scenarios.The feature pyramid network(FPN)has complex and time-consuming fusion computations,which still faces great challenges when deployed on edge devices like UAVs.Therefore,this paper proposes a lightweight method for small object detection in UAVs based on L-FPN.First,normalize the scale according to the GSD information of the image.Second,re-move redundant high-level feature maps in the FPN.Finally,adjust the anchor box sizes for small object detec-tion.The method is trained and validated on the DOTA dataset.Results show that compared to the traditional models,the proposed L-FPN-based lightweight method for small object detection in UAVs achieves consistent recognition accuracy,with 2.7%fewer model parameters,28%smaller model size,and 13.24%faster infer-ence speed.

关键词

目标检测/特征金字塔/模型轻量化/遥感图像/无人机

Key words

object detection/feature pyramid/model lightweight/remote sensing images/UAV

分类

军事科技

引用本文复制引用

魏昊坤,刘敬一,陈金勇,楚博策,孙裕鑫,朱进..基于L-FPN的无人机上小目标识别模型轻量化方法[J].航空兵器,2024,31(1):97-102,6.

基金项目

中国博士后科学基金项目(2021M703021) (2021M703021)

河北省重点研发计划项目(22340301D) (22340301D)

河北省博士后基金项目(B2021003031) (B2021003031)

航空兵器

OA北大核心CSTPCD

1673-5048

访问量0
|
下载量0
段落导航相关论文