| 注册
首页|期刊导航|化工学报|反向传播神经网络用于预测离子液体的自扩散系数

反向传播神经网络用于预测离子液体的自扩散系数

肖拥君 时兆翀 万仁 宋璠 彭昌军 刘洪来

化工学报2024,Vol.75Issue(2):429-438,10.
化工学报2024,Vol.75Issue(2):429-438,10.DOI:10.11949/0438-1157.20230955

反向传播神经网络用于预测离子液体的自扩散系数

Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks

肖拥君 1时兆翀 1万仁 1宋璠 1彭昌军 1刘洪来1

作者信息

  • 1. 华东理工大学化学与分子工程学院,上海 200237
  • 折叠

摘要

Abstract

Using the charge density distribution fragment area(Sσ)and hole volume(VCOSMO)obtained by the fragment activity coefficient conductor-like shielding model(COSMO-SAC)as structural descriptors,we developed a quantitative structure-property relationship(QSPR)model,namely the BP-ANN model,to predict cation and anion self-diffusion coefficients of ionic liquids.The range of applicability and predictive capability of the BP-ANN model were also examined and compared with another QSPR model established by linear regression(Model I).The results revealed that the BP-ANN model can be applied to a broader range of ionic liquid species compared with Model I.The BP-ANN model achieves a high coefficient of determination(R2)value exceeding 0.99 in the training,validation,and testing dataset for cations,and surpassing 0.98 for anions across all sub-datasets.For the total dataset,the BP-ANN model yields low average absolute relative deviations(AARD)of 2.8%for cations and 3.7%for anions between calculated and experimental values,while the corresponding values for Model I are 14.54%and 14.57%,respectively.Therefore,the prediction performance of the BP-ANN model is significantly better than that of the model based on linear regression.

关键词

神经网络/定量构效关系/离子液体/自扩散系数/预测

Key words

neural networks/QSPR/ionic liquids/self-diffusion coefficient/prediction

分类

化学化工

引用本文复制引用

肖拥君,时兆翀,万仁,宋璠,彭昌军,刘洪来..反向传播神经网络用于预测离子液体的自扩散系数[J].化工学报,2024,75(2):429-438,10.

基金项目

国家自然科学基金项目(22078086,22378111) (22078086,22378111)

化工学报

OA北大核心CSTPCD

0438-1157

访问量0
|
下载量0
段落导航相关论文