| 注册
首页|期刊导航|化工学报|基于注意力模块化神经网络的城市固废焚烧过程氮氧化物排放预测

基于注意力模块化神经网络的城市固废焚烧过程氮氧化物排放预测

蒙西 王岩 孙子健 乔俊飞

化工学报2024,Vol.75Issue(2):593-603,11.
化工学报2024,Vol.75Issue(2):593-603,11.DOI:10.11949/0438-1157.20231081

基于注意力模块化神经网络的城市固废焚烧过程氮氧化物排放预测

Prediction of NOx emissions for municipal solid waste incineration processes using attention modular neural network

蒙西 1王岩 1孙子健 1乔俊飞1

作者信息

  • 1. 北京工业大学信息学部,北京 100124||智慧环保北京实验室,北京 100124||智能感知与自主控制教育部工程研究中心,北京 100124
  • 折叠

摘要

Abstract

Real-time and accurate measurement of NOx emissions is indispensable to achieve closed-loop control of the denitrification process during municipal solid waste incineration(MSWI).To this end,this paper proposes a NOx emission prediction method for the MSWI process based on attention modular neural network(AMNN).First,it simulates the"divide and conquer"characteristics of the brain network in processing complex tasks,and uses the fuzzy C-means(FCM)clustering algorithm to divide the task to be predicted into multiple subtasks,thereby reducing the complexity of the prediction task.Second,to handle the sub-tasks efficiently,a self-organizing fuzzy neural network(SOFNN)is designed to construct the sub-models,in which a growing and pruning algorithm and an improved second-order learning algorithm work together to ensure both the learning efficiency and accuracy.Then,the attention mechanism is utilized to integrate the sub-models during the testing or application stages,which can further improve the generalization performance of this AMNN-based prediction model.Finally,the proposed prediction method is verified by Mackey-Glass time series and the real data from a MSWI plant in Beijing.

关键词

城市固废焚烧/模块化神经网络/注意力机制/NOx排放预测

Key words

municipal solid waste incineration/modular neural network/attention mechanism/NOx emissions prediction

分类

信息技术与安全科学

引用本文复制引用

蒙西,王岩,孙子健,乔俊飞..基于注意力模块化神经网络的城市固废焚烧过程氮氧化物排放预测[J].化工学报,2024,75(2):593-603,11.

基金项目

国家重点研发计划项目(2019YFC1906004-2) (2019YFC1906004-2)

国家自然科学基金项目(622731013,61890930-5,62021003,62001012) (622731013,61890930-5,62021003,62001012)

化工学报

OA北大核心CSTPCD

0438-1157

访问量0
|
下载量0
段落导航相关论文