| 注册
首页|期刊导航|火力与指挥控制|融合Q学习算法和人工势场算法的无人机航迹规划方法

融合Q学习算法和人工势场算法的无人机航迹规划方法

刘冬 余文泉 霍文健 李瑞 姜伟月

火力与指挥控制2024,Vol.49Issue(2):119-124,6.
火力与指挥控制2024,Vol.49Issue(2):119-124,6.DOI:10.3969/j.issn.1002-0640.2024.02.018

融合Q学习算法和人工势场算法的无人机航迹规划方法

UAV Route Planning Method Based on Fusion of Q-learning Algorithm and Artificial Potential Field Algorithm

刘冬 1余文泉 1霍文健 1李瑞 1姜伟月1

作者信息

  • 1. 北方自动控制技术研究所,太原 030006
  • 折叠

摘要

Abstract

Aiming at the problem of collision with static obstacles when using a flight route planned by Q-learning algorithm,a UAV route planning method based on fusion of Q-learning algorithm and artificial potential field algorithm is proposed.The method first uses the Q-learning algorithm to plan a route,then counts the obstacles contained in each flight leg of the route according to the map,and finally applies the improved artificial potential field method to re-plan the flight leg containing obstacles.The experimental results show that the proposed fusion method can plan the shortest route to avoid collision with static obstacles at the cost of a small amount of time and trajectory length.

关键词

航迹规划/Q学习算法/人工势场/无人机

Key words

route planning/Q-learning algorithm/artificial potential field/UAV

分类

信息技术与安全科学

引用本文复制引用

刘冬,余文泉,霍文健,李瑞,姜伟月..融合Q学习算法和人工势场算法的无人机航迹规划方法[J].火力与指挥控制,2024,49(2):119-124,6.

火力与指挥控制

OA北大核心CSTPCD

1002-0640

访问量4
|
下载量0
段落导航相关论文