| 注册
首页|期刊导航|计算机工程与应用|E-TUP:融合E-CP与TUP的联合知识图谱学习推荐方法

E-TUP:融合E-CP与TUP的联合知识图谱学习推荐方法

赵博 王宇嘉 倪骥

计算机工程与应用2024,Vol.60Issue(8):99-109,11.
计算机工程与应用2024,Vol.60Issue(8):99-109,11.DOI:10.3778/j.issn.1002-8331.2211-0464

E-TUP:融合E-CP与TUP的联合知识图谱学习推荐方法

E-TUP:Joint Knowledge Graph Learning Recommendation Method Incorporating E-CP and TUP

赵博 1王宇嘉 1倪骥1

作者信息

  • 1. 上海工程技术大学 电子电气工程学院,上海 201600
  • 折叠

摘要

Abstract

At present,most of the methods to introduce knowledge graphs into recommendation systems only introduce known surface knowledge graph entities,without predicting and mining the intrinsic relationships of the graphs,and thus cannot exploit the hidden relationships in the knowledge graphs.In this paper,the joint learning recommendation model E-TUP(enhance towards understanding of user preference)is proposed to address the above problem,and E-CP(enhance canonical polyadic)is used to complement the knowledge graph and deliver the complete information.A storage space negative sampling method is used to store and update high-quality negative triples with the training process to improve the quality of negative triples in the knowledge graph complementation.Experimental results on link prediction show that the storage-space approach improves the link prediction accuracy of the E-TUP model by up to 10.3%compared to existing models.Recommendation experiments on the MovieLens-1m and DBbook2014 datasets achieve the best results on several evaluation metrics,achieving up to 5.5%improvement,indicating that E-TUP can effectively exploit the hidden relationships in the knowledge graph to improve recommendation accuracy.Finally,the results of the recommendation experiments based on automotive maintenance data show that E-TUP can effectively recommend relevant knowledge.

关键词

知识图谱/推荐系统/链接预测/联合学习/知识图谱补全

Key words

knowledge graph/recommendation system/link prediction/joint learning/knowledge graph complement

分类

信息技术与安全科学

引用本文复制引用

赵博,王宇嘉,倪骥..E-TUP:融合E-CP与TUP的联合知识图谱学习推荐方法[J].计算机工程与应用,2024,60(8):99-109,11.

基金项目

国家自然科学基金(61403249) (61403249)

科技创新2030—"新一代人工智能"重大项目(2020AAA0109300). (2020AAA0109300)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量4
|
下载量0
段落导航相关论文