| 注册
首页|期刊导航|计算机工程与应用|改进Deeplabv3+的双注意力融合作物分类方法

改进Deeplabv3+的双注意力融合作物分类方法

郭金 宋廷强 孙媛媛 巩传江 刘亚林 马兴录 范海生

计算机工程与应用2024,Vol.60Issue(8):110-120,11.
计算机工程与应用2024,Vol.60Issue(8):110-120,11.DOI:10.3778/j.issn.1002-8331.2211-0468

改进Deeplabv3+的双注意力融合作物分类方法

Improved Deeplabv3+ Crop Classification Method Based on Double Attention Fusion

郭金 1宋廷强 2孙媛媛 2巩传江 1刘亚林 1马兴录 1范海生3

作者信息

  • 1. 青岛科技大学 信息科学技术学院,山东 青岛 266061
  • 2. 青岛科技大学 信息科学技术学院,山东 青岛 266061||青岛科技大学 大数据学院,山东 青岛 266061
  • 3. 岭南大数据研究院 时空大数据研究室,广东 珠海 519000
  • 折叠

摘要

Abstract

In recent years,convolutional neural networks(CNN)have made new progress in crop classification research,but they have shown some limitations in modeling long-term dependence,and there are deficiencies in capturing the global characteristics of crops.In view of the above problems,Transformer is introduced into the Deeplab v3+ model,and a par-allel branch structure for crop classification of drone images,the DeepTrans(Deeplab v3+ with Transformer)model is pro-posed.DeepTrans combines Transformer and CNN in a parallel way,which is conducive to the effective capture of global and local features.Transformer is introduced to enhance the remote dependence of information in the image and improve the extraction ability of crop global information.Channel attention mechanism and spatial attention mechanism are added to enhance the sensitivity of Transformer to channel information and the ability of ASPP(aerospace spatial pyramid pooling)to capture crop spatial information.The experimental result shows that the MIoU index of the DeepTrans mod-el can reach 0.812,which is 3.9%higher than that of the Deeplab v3+ model.The accuracy of the model in the classifica-tion of five crops has been improved.For sugarcane,corn and banana which are easy to be wrongly classified,their IoU has been increased by 2.9%,4.7%and 13%respectively.It can be seen that DeepTrans model has a better segmentation ef-fect in the internal filling and global prediction of crop classification images,which is helpful to monitor the planting structure and scale of farmland crops more timely and accurately.

关键词

农作物分类/无人机影像/Deeplab v3+/Transformer/注意力机制

Key words

crop classification/drone image/Deeplab v3+/Transformer/attention module

分类

信息技术与安全科学

引用本文复制引用

郭金,宋廷强,孙媛媛,巩传江,刘亚林,马兴录,范海生..改进Deeplabv3+的双注意力融合作物分类方法[J].计算机工程与应用,2024,60(8):110-120,11.

基金项目

山东省重点研发计划项目(2019GGX101047) (2019GGX101047)

山东省自然科学基金青年项目(ZR2021QC120). (ZR2021QC120)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文