| 注册
首页|期刊导航|计算机工程与应用|融合Lasso的近似马尔科夫毯特征选择方法

融合Lasso的近似马尔科夫毯特征选择方法

刘明 杜建强 李郅琴 罗计根 聂斌 张梦婷

计算机工程与应用2024,Vol.60Issue(8):121-130,10.
计算机工程与应用2024,Vol.60Issue(8):121-130,10.DOI:10.3778/j.issn.1002-8331.2212-0094

融合Lasso的近似马尔科夫毯特征选择方法

Approximate Markov Blanket Feature Selection Method Based on Lasso Fusion

刘明 1杜建强 1李郅琴 2罗计根 1聂斌 1张梦婷1

作者信息

  • 1. 江西中医药大学 计算机学院,南昌 330004
  • 2. 江西师范大学 信息化办公室,南昌 330022
  • 折叠

摘要

Abstract

In feature selection,approximate Markov blankets are often used to judge redundant features,but the redun-dant features obtained are not identical.Therefore,when using approximate Markov blankets directly to delete redundant features,there may be situations that may lead to information loss and affect model accuracy.Therefore,an approximate Markov blanket feature selection method based on Lasso fusion for high-dimensional small sample data of traditional Chinese medicine metabonomics is proposed.The method is divided into two stages.In the first stage,irrelevant features are filtered by analyzing the correlation of features with the maximum information coefficient.In the second stage,approximate Markov blankets are used to construct similar feature groups,Lasso is used to evaluate the influence of features in similar feature groups,and redundant features are removed iteratively.The experimental results show that the algorithm can reduce the loss of useful information,remove irrelevant features and redundant features,and improve the accuracy and stability of the model.

关键词

近似马尔科夫毯/Lasso/特征选择/高维小样本/中医药信息

Key words

approximate Markov blanke/Lasso/feature selection/high dimensional small sample/traditional Chinese medicine(TCM)information

分类

信息技术与安全科学

引用本文复制引用

刘明,杜建强,李郅琴,罗计根,聂斌,张梦婷..融合Lasso的近似马尔科夫毯特征选择方法[J].计算机工程与应用,2024,60(8):121-130,10.

基金项目

国家自然科学基金(62141202,82160955,82260988) (62141202,82160955,82260988)

国家重点研发计划项目(2019YFC1712301) (2019YFC1712301)

江西省自然科学基金面上项目(20202BAB202019) (20202BAB202019)

江西省教育厅科学技术研究项目(GJJ190683) (GJJ190683)

江西中医药大学校级科技创新团队发展计划(CXTD22015). (CXTD22015)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文