| 注册
首页|期刊导航|计算机工程与应用|脑电信号多特征融合与卷积神经网络算法研究

脑电信号多特征融合与卷积神经网络算法研究

宋世林 张学军

计算机工程与应用2024,Vol.60Issue(8):148-155,8.
计算机工程与应用2024,Vol.60Issue(8):148-155,8.DOI:10.3778/j.issn.1002-8331.2212-0301

脑电信号多特征融合与卷积神经网络算法研究

Algorithm Research Based on Multi-Feature Fusion of EEG Signals with Convolutional Neural Networks

宋世林 1张学军2

作者信息

  • 1. 南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院,南京 210023
  • 2. 南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院,南京 210023||南京邮电大学 射频集成与微组装技术国家地方联合工程实验室,南京 210023
  • 折叠

摘要

Abstract

In order to address the issue of low classification accuracy in motor imagery of electroencephalogram(EEG)signals,a feature extraction algorithm based on sample entropy and common spatial pattern(CSP)feature fusion has been proposed.The algorithm initially performs wavelet packet decomposition on the raw EEG signal,selecting the compo-nents containing μ and β rhythms for reconstruction.Subsequently,the sample entropy and CSP features of the recon-structed signal are separately extracted.These two features are then fused to create a new feature vector which is recog-nized using a one-dimensional convolutional neural network designs in the paper,to obtain the classification result.The proposes method achieves a classification accuracy of 91.66%on the BCI Dataset Ⅲ in 2003 and an average classification accuracy of 85.29%on the BCI Dataset A in 2008.Comparing with multi-feature fusion algorithms proposed in recent literature,the accuracy is improved by 7.96 percentage points.

关键词

脑电信号/运动想象/小波包重构/样本熵/共空间模式/卷积神经网络

Key words

electroencephalogram/motor imagery/wavelet packet transform/sample entropy/common spatial pattern/convolution neural network

分类

医药卫生

引用本文复制引用

宋世林,张学军..脑电信号多特征融合与卷积神经网络算法研究[J].计算机工程与应用,2024,60(8):148-155,8.

基金项目

国家自然科学基金(61977039). (61977039)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量4
|
下载量0
段落导航相关论文