| 注册
首页|期刊导航|计算机工程与应用|分布统计特征的孪生网络目标跟踪方法

分布统计特征的孪生网络目标跟踪方法

李俊 曹林 张帆 杜康宁 郭亚男

计算机工程与应用2024,Vol.60Issue(8):213-224,12.
计算机工程与应用2024,Vol.60Issue(8):213-224,12.DOI:10.3778/j.issn.1002-8331.2211-0435

分布统计特征的孪生网络目标跟踪方法

Siamese Networks for Object Tracking on Statistical Characteristics of Distributions

李俊 1曹林 2张帆 3杜康宁 3郭亚男3

作者信息

  • 1. 北京信息科技大学 仪器科学与光电工程学院,北京 100101||北京信息科技大学 光电测试技术及仪器教育部重点实验室,北京 100101
  • 2. 北京信息科技大学 光电测试技术及仪器教育部重点实验室,北京 100101||北京信息科技大学 信息与通信系统信息产业部重点实验室,北京 100101
  • 3. 北京信息科技大学 信息与通信系统信息产业部重点实验室,北京 100101
  • 折叠

摘要

Abstract

Although siamese trackers have achieved great success,the tracking performance is inferior in complex scenes such as ambiguous boundaries.Most of the existing methods use the inflexible Dirac distribution for target localization.Due to the lack of uncertainty estimation of the bounding box,the target cannot be accurately located under the ambiguous boundaries.For this purpose,this paper improves SiamBAN.Firstly,the representation of the bounding box is changed from Dirac distribution to the general distribution within a certain range with the help of the characteristics that distribu-tion statistics of the bounding box are highly correlated with the actual localization quality.Secondly,a higher localization quality estimation score is generated by putting the distribution statistics into distribution guided quality predictor.Finally,classification and localization quality estimation are represented jointly which can overcome the problem of inconsistency between classification and localization in training and testing stages.Extensive experiments on visual tracking datasets including VOT2018,VOT2019,OTB100,UAV123,LaSOT,TrackingNet,and GOT-10k demonstrate that the performance of proposed method surpass SiamBAN by 3.3%~10%in terms of accuracy and EAO.

关键词

孪生网络/定位质量/不确定性估计/分布统计特性/分布引导质量预测器

Key words

siamese network/localization quality/uncertainty estimation/distribution statistics/distribution guided quality predictor

分类

信息技术与安全科学

引用本文复制引用

李俊,曹林,张帆,杜康宁,郭亚男..分布统计特征的孪生网络目标跟踪方法[J].计算机工程与应用,2024,60(8):213-224,12.

基金项目

国家自然科学基金(62001033,62201066,U20A20163) (62001033,62201066,U20A20163)

北京信息科技大学"勤信人才"培育计划(QXTCP C202108) (QXTCP C202108)

北京市教委科研计划(KM202011232021,KZ202111232049,KM202111232014). (KM202011232021,KZ202111232049,KM202111232014)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文