| 注册
首页|期刊导航|计算机工程与应用|支持抑制型脉冲神经网络的硬件加速器

支持抑制型脉冲神经网络的硬件加速器

钱平 韩睿 谢凌东 罗旺 徐华荣 李松松 郑振东

计算机工程与应用2024,Vol.60Issue(8):338-347,10.
计算机工程与应用2024,Vol.60Issue(8):338-347,10.DOI:10.3778/j.issn.1002-8331.2301-0133

支持抑制型脉冲神经网络的硬件加速器

Hardware Accelerator Supporting Inhibitory Spiking Neural Network

钱平 1韩睿 1谢凌东 2罗旺 3徐华荣 3李松松 4郑振东4

作者信息

  • 1. 国网浙江省电力有限公司,杭州 310000
  • 2. 国网浙江省电力有限公司 宁波供电公司,浙江 宁波 315000
  • 3. 国网电力科学研究院有限公司,南京 210000
  • 4. 中国科学技术大学 苏州高等研究院,江苏 苏州 215123
  • 折叠

摘要

Abstract

The design of existing spiking neural network accelerators pays too much attention to the functional integrity of the hardware level and lacks relevant collaborative optimization at the algorithm level to ensure hardware computing efficiency.In addition,traditional event-driven spiking neural network accelerators do not consider the ubiquitous spike jitter phenomenon in spiking neuron models,so they cannot support inhibitory spiking neural networks.In order to solve the above problems,a design method of a suppressive spiking neural network accelerator is proposed by combining software and hardware.At the software optimization level,through the analysis of the calculation redundancy of the spiking neural network,a corresponding approximate calculation method is proposed to reduce the calculation amount of the spiking neural network greatly;at the hardware design level,a calculation module to solve the problem of pulse jitter is proposed,and on this basis,a parallel computing structure suitable for the approximate computing method is designed.In order to verify the rationality of the design,the accelerator prototype FEAS is deployed on Xilinx ZC706 FPGA.The test results on main-stream datasets show that compared with the previous accelerator deployment of spiking neural networks,FEAS has achieved more than an order of magnitude performance improvement while maintaining 97.54%of the original model accuracy.

关键词

脉冲神经网络/事件驱动/抑制型网络/近似计算/硬件加速器

Key words

spiking neural network/event-driven/inhibitory neural network/approximation calculation/hardware accelerator

分类

信息技术与安全科学

引用本文复制引用

钱平,韩睿,谢凌东,罗旺,徐华荣,李松松,郑振东..支持抑制型脉冲神经网络的硬件加速器[J].计算机工程与应用,2024,60(8):338-347,10.

基金项目

国家电网公司总部科技项目(5700-202119266A-0-0-00). (5700-202119266A-0-0-00)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文