|国家科技期刊平台
首页|期刊导航|计算机与现代化|基于改进D3QN算法的泊车机器人路径规划

基于改进D3QN算法的泊车机器人路径规划OACSTPCD

Path Planning of Parking Robot Based on Improved D3QN Algorithm

中文摘要英文摘要

针对城市泊车问题,泊车机器人应运而生,其路径规划是重要的研究方向.由于A*算法的局限性,本文引入深度强化学习思想,并对由此发展起来的D3QN算法进行改进,将残差网络取代卷积网络,引入注意力机制,从而提出SE-RD3QN算法,以改善网络退化现象和提高收敛速度,并提升模型的精准率.在算法训练过程中,改进奖惩机制,以实现最优方案的快速收敛.通过与D3QN算法、增加残差层的RD3QN算法的对比实验,结果表明本文提出的SE-RD3QN算法在模型训练时可实现更快的收敛速度.与目前常用的A*+TEB算法的对比实验,结果表明本文算法在路径规划时可获得更短的路径长度与规划时间.最后通过模拟小车的实物实验,进一步验证了算法的有效性.这为停车路径规划提供了新的解决方案.

The parking robot emerges as a solution to the urban parking problem,and its path planning is an important research direction.Due to the limitations of the A*algorithm,the deep reinforcement learning idea is introduced in this article,and im-proves the D3QN algorithm.Through replacing the convolutional network with a residual network and introducing attention mechanisms,the SE-RD3QN algorithm is proposed to improve network degradation and convergence speed,and enhance model accuracy.During the algorithm training process,the reward and punishment mechanism is improved to achieve rapid conver-gence of the optimal solution.Through comparing the experimental results of the D3QN algorithm and the RD3QN algorithm with added residual layers,it shows that the SE-RD3QN algorithm achieves faster convergence during model training.Compared with the currently used A*+TEB algorithm,SE-RD3QN can obtain shorter path length and planning time in path planning.Finally,the effectiveness of the algorithm is further verified through physical experiments simulating a car,which provides a new solution for parking path planning.

王健铭;王欣;李养辉;王殿龙

大连理工大学机械工程学院,辽宁 大连 116023大连船舶重工集团有限公司生产保障部,辽宁 大连 116023

计算机与自动化

深度强化学习泊车机器人路径规划激光雷达传感器

deep reinforcement learningparking robotpath planninglidar sensors

《计算机与现代化》 2024 (003)

7-14 / 8

国家自然科学基金资助项目(52275088);中央高校基本科研业务费资助(DUT22LAB507)

10.3969/j.issn.1006-2475.2024.03.002

评论