|国家科技期刊平台
首页|期刊导航|流体机械|配气站浮动式球阀阀芯迎流面冲蚀行为及其后果

配气站浮动式球阀阀芯迎流面冲蚀行为及其后果OA北大核心CSTPCD

Erosion behavior and it's consequences of valve core incoming surface for floating ball valve in gas distribution station

中文摘要英文摘要

为了避免配气站常用浮动式球阀因高运行负荷与气携粉尘持续冲蚀而突发安全事故,选用Ahlert冲蚀速率模型,模拟分析了当30°开度时304不锈钢阀芯迎流面的冲击角变化趋势,科学评估了阀芯迎流面的冲蚀行为与薄弱区域.结果表明,粉尘在阀芯迎流面A~I测点处的冲击角随壁厚损失呈同步增大趋势,迎流面受粉尘持续冲蚀而不断凹陷,致使迎流面上粉尘的流速从7.4 m/s降至5.9 m/s;迎流面冲蚀后表面粉尘流速也呈现减小趋势,从0.010 kg/s降低至0.005 kg/s,且颗粒沉积的区域也在向球体的后方移动;迎流面上各处壁厚减薄速率不一,应有针对性地布置球阀防冲蚀涂层,并采用动态方法核算球阀在节流工况下的使用寿命.研究结论可为配气站用球阀的设计和维护提供参考.

In order to avoid sudden safety accidents caused by high operating load and continuous erosion of gas-carried dust of floating ball valves widely used in gas distribution stations,the Ahlert erosion rate model was adopted to simulate and analyze the change trend of impact angle of the incoming surface of 304 stainless valve core at 30° opening using numerical calculation theory and method.The reliability of the numerical simulation results was verified by experiments.The erosion behavior and weak areas on the incoming flow surface of the valve core were scientifically evaluated.The results show that the impact angle of dust at 9 locations from point A to I on the incoming surface of the valve core increases synchronously with the wall thickness loss,and the incoming surface is continuously eroded and leaves some dents,resulting in the dust velocity on the incoming surface dropping from 7.4 m/s to 5.9 m/s.The surface dust flow speed decreases from 0.010 kg/s to 0.005 kg/s after erosion of the incoming surface,and the area of particle deposition also moves to the rear of the ball.The wall thickness thinning rate varies for each location on the incoming surface.Anti-erosion coating should be arranged accordingly,and the service life of ball valve under throttling condition should be evaluated by this dynamic method.

敬佩瑜;郑思佳;程华;王娅婷;段行琼

西南石油大学 石油与天然气工程学院,成都 610500||油气消防四川省重点试验室,成都 610500西南油气田分公司集输工程技术研究所,成都 610213中煤科工重庆设计研究院(集团)有限公司,重庆 400016西南化工研究设计院有限公司,成都 610225

机械工程

冲蚀行为冲击角粉尘流速迎流面阀芯

erosion behaviorimpact angledust velocityincoming surfacevalve core

《流体机械》 2024 (003)

深水蜡晶与水合物多相混输管道固相沉积与安全输运机制

73-80 / 8

国家自然科学基金项目(U19B2012)

10.3969/j.issn.1005-0329.2024.03.010

评论