| 注册
首页|期刊导航|流体机械|基于DBN和BES-LSSVM的矿用压风机异常状态识别方法

基于DBN和BES-LSSVM的矿用压风机异常状态识别方法

李敬兆 王克定 王国锋 郑鑫 石晴

流体机械2024,Vol.52Issue(3):89-97,9.
流体机械2024,Vol.52Issue(3):89-97,9.DOI:10.3969/j.issn.1005-0329.2024.03.012

基于DBN和BES-LSSVM的矿用压风机异常状态识别方法

Abnormality identification method of mining air compressor based on DBN and BES-LSSVM

李敬兆 1王克定 1王国锋 2郑鑫 2石晴3

作者信息

  • 1. 安徽理工大学 电气与信息工程学院,安徽淮南 232001
  • 2. 淮南矿业集团,安徽淮南 232001
  • 3. 淮北合众机械设备有限公司,安徽淮北 235000
  • 折叠

摘要

Abstract

For the problems of complex categories of abnormality and low recognition accuracy of distributed systems such as mining air compressors,an abnormal state recognition method based on deep belief network(DBN)and least squares support vector machine(LSSVM)was proposed.Firstly,the composition system of the air compressor and its operation mechanism were analyzed to determine the types of common abnormal states.Secondly,DBN unsupervised learning was used to fully mine the abnormal features in the monitoring data and quickly extract them.Then,the bald eagle search(BES)was used to optimize the hyperparameters of LSSVM to construct the optimal BES-LSSVM classification model.Finally,the abnormal features extracted by DBN were used as inputs to the BES-LSSVM model to identify the abnormal status of mining air compressor.The experimental verification and comparative analysis results show that compared to GA,PSO and GWO algorithms,the BES algorithm has improved solution accuracy and convergence speed.At the same time,the DBN-BES-LSSSVM model has an average recognition accuracy of 94.65%on the test set,which is 10.53%,5.84%and 3.76%higher than the PCA-LSSVM model,DBN model,and DBN-LSSVM model,respectively,which verifies the superiority of the DBN-BES-LSSVM model in extracting abnormal features and feature recognition of mining air compressor.

关键词

矿用压风机/深度置信网络/秃鹰搜索算法/最小二乘支持向量机/异常识别

Key words

mining air compressor/deep belief network/bald eagle search algorithm/least squares support vector machine/exception recognition

分类

机械制造

引用本文复制引用

李敬兆,王克定,王国锋,郑鑫,石晴..基于DBN和BES-LSSVM的矿用压风机异常状态识别方法[J].流体机械,2024,52(3):89-97,9.

基金项目

国家自然科学基金项目(51874010,61170060) (51874010,61170060)

淮北市重大科技专项(Z2020004) (Z2020004)

淮南市科技计划项目(2021A243) (2021A243)

物联网关键技术研究创新团队(201950ZX003) (201950ZX003)

流体机械

OA北大核心CSTPCD

1005-0329

访问量0
|
下载量0
段落导航相关论文