|国家科技期刊平台
首页|期刊导航|棉纺织技术|基于ISSA-BP神经网络的纺纱生产工艺参数反演

基于ISSA-BP神经网络的纺纱生产工艺参数反演OACSTPCD

Parameter inversion of spinning production process based on ISSA-BP neural network

中文摘要英文摘要

针对传统的反演模型精度不高且传统BP神经网络有权值和阈值初值过于随机化、稳定性和准确性差等问题,提出了基于改进麻雀搜索算法(ISSA)的BP神经网络纺纱生产工艺参数反演模型.利用灰色关联分析法提取出10个关键工艺参数,以其作为模型输入;引入Chebyshev混沌映射、正余弦算法(SCA)和自适应权重因子对麻雀搜索算法(SSA)进行优化,并用ISSA优化BP神经网络,在此基础上构建纺纱生产工艺参数反演模型;利用ISSA对参数反演模型进行求解.以纤维属性和纺纱车间细纱工序为对象进行反演验证,试验结果表明:ISSA-BP预测值的MAPE、MSE、MAE、迭代次数、适应度值均优于SSA-BP模型;对反演优化后的工艺参数进行预测,预测的质量指标与期望质量指标的平均相对误差(MRE)为5.04%.认为:基于ISSA-BP神经网络的纺纱生产工艺参数反演精度较高,有助于工艺参数的合理设计.

In order to solve the problems of lower accuracy of traditional inversion model,excessive randomization of weights and initial threshold values,worse stability and accuracy of traditional BP(back propagation)neural network,a parameter inversion model for spinning production process of BP neural network based on improved sparrow search algorithm(ISSA)was proposed.Ten key process parameters were extracted by grey relational analysis and used as model input.Chebyshev chaotic map,sine cosine algorithm(SCA)and adaptive weight factor were introduced to optimize sparrow search algorithm(SSA).And BP neural network was optimized by the improved sparrow search algorithm(ISSA).On this basis,the parameter inversion model of spinning production process was constructed.ISSA was used to solve the parameter inversion model.Inversion verification was carried out with fiber property and spinning workshop as objects.The experimental results showed that the MAPE,MSE,MAE,iteration time and fitness of ISSA-BP predicted values were all better than those of SSA-BP model.The process parameters after inversion optimization were forecasted.The mean relative error(MRE)between predicted quality index and expected quality index was 5.04%.It is considered that the inversion precision of spinning process parameters based on ISSA-BP neural network is higher,which is helpful to the reasonable design of process parameters.

刘颖;张守京;胡胜

西安工程大学,陕西西安,710048

计算机与自动化

纺纱生产工艺参数反演优化纱线质量麻雀搜索算法神经网络

spinning productionprocess parameter inversion optimizationyarn qualitysparrow search algorithmneural network

《棉纺织技术》 2024 (004)

1-7 / 7

西安市现代智能纺织装备重点实验室(2019220614SYS021CG043)

评论