基于粒子群优化支持向量机的纱线质量预测OACSTPCD
Yarn quality prediction based on support vector machine optimized by particle swarm optimization
针对复杂纺纱过程中成纱质量预测精度不足以及深度学习对庞大数据集依赖性的缺陷,提出一种基于粒子群算法优化支持向量机的小样本成纱质量预测方法.首先,对原始数据集样本序列进行灰色关联预处理,按照关联度大小进行排序,再结合先验知识库筛选出主要的原棉纤维指标;其次,针对小样本预测问题,建立了线性核、多项式核、高斯核以及自适应带宽RBF核等不同核函数支持向量回归(SVR)预测模型;最后,采用粒子群优化(PSO)算法对高斯核SVR模型的超参数(正则化系数和带宽调节参数)进行辨识,设计一种综合适应度函数与线性递减惯性权重策略,用以提高PSO算法的寻优能力.仿真结果表明:PSO优化高斯核SVR模型对不同成纱质量指标有较好的预测效果,其平均相对误差不超过2%.认为:PSO优化高斯核SVR模型对成纱质量指标的预测误差较低,具有良好的适应性.
In light of the insufficient prediction accuracy in yarn quality during complex spinning processes and the demand for large datasets,this study presents a small sample yarn quality prediction method by optimizing Support Vector Machines(SVR)using Particle Swarm Optimization(PSO).Firstly,the original dataset samples are preprocessed using grey relational analysis,and they are ranked based on their degrees of correlation.Combining this with prior knowledge,the primary cotton fiber features are selected.Secondly,for the small sample prediction problem,SVR prediction models with different kernel functions,including linear,polynomial,Gaussian,and adaptive bandwidth RBF kernels,are established.Finally,PSO algorithm is employed to identify the hyperparameters of the SVR models,including the regularization coefficient and bandwidth adjustment parameter.Additionally,a linearly decreasing inertia weight strategy is designed to enhance the overall optimization capability of the PSO algorithm.The simulation results show that the PSO-optimized Gauss kernel SVR model has a good prediction effect on different yarn quality indexes,and its average relative error is less than 2%.It is concluded that the PSO-optimized Gauss kernel SVR model has a low prediction error for yarn quality index and a good adaptability.
章军辉;陈明亮;郭晓满;付宗杰;王静贤
常熟理工学院,江苏苏州,215500||无锡物联网创新中心有限公司,江苏无锡,214029||江苏省物联网创新中心昆山分中心,江苏苏州,215347中国科学院大学,北京,100049||无锡物联网创新中心有限公司,江苏无锡,214029||江苏省物联网创新中心昆山分中心,江苏苏州,215347无锡物联网创新中心有限公司,江苏无锡,214029||江苏省物联网创新中心昆山分中心,江苏苏州,215347
轻工业
支持向量机粒子群优化灰色关联纱线质量预测核函数
support vector machineparticle swarm optimizationgrey correlationyarn quality predictionkernel function
《棉纺织技术》 2024 (004)
16-22 / 7
江苏省博士后科研资助计划(2020Z411)
评论