|国家科技期刊平台
首页|期刊导航|辽宁工程技术大学学报(自然科学版)|典型神经网络串联型电弧故障检测及选线方法研究

典型神经网络串联型电弧故障检测及选线方法研究OACSTPCD

Research on series arc fault detection and line selection methods based on typical neural networks

中文摘要英文摘要

为解决传统特征分析加机器学习的电弧故障检测方法的准确率和实时性受到特征参数选取的主观性及特征分析过程的影响问题,搭建了三相多负载并联的串联型电弧故障实验系统,对不同支路、不同相发生电弧故障时的干路电流信号时间序列进行分析.将电流信号进行分类、分段、标准化处理并作为检测模型样本;对深度卷积神经网络模型、长短期记忆网络模型、普通神经网络模型进行架构及训练;通过差分处理对网络模型在线分类结果进行优化分析;以准确度和损失函数值、在线测试速度、优化后多分类识别准确率为评价指标,对比分析了3种模型故障检测及选线效果.研究结果表明:基于深度卷积神经网络的串联型电弧故障检测及选线模型对电机类负载故障检测及选线准确率可达 96.77%,对变频器类负载故障检测及选线准确率可到 98%,准确率高于近几年其他三相回路电弧故障检测模型.

The accuracy and real-time of arc fault detection method based on traditional feature analysis and machine learning may be affected by the subjectivity of feature parameter selection and the process of feature analysis.A three-phase and multi-load parallel series arc fault experimental system was built.The time series of the current signal of the trunk circuit when the arc fault occurred in different branches and phases were analyzed.After classification,segmentation and standardization,the signal was directly used as input samples of the detection model.Then,the deep convolutional neural network(DCNN)model,long short-term memory(LSTM)model,and artificial neural network(ANN)model were built and trained.The differential method was proposed to optimize the classification results of the detection models.The detection and line selection effects of the three models were compared through the accuracy,loss function value,online test speed,and accuracy of multiclass recognition after optimization.The results showe that the accuracy of the series arc fault detection and line selection model based on DCNN can reach 96.77%for motor load and 98%for frequency converter load.The accuracy exceeded that of other three-phase circuit arc fault detection models in recent years.

刘艳丽;张帆;吕正阳;王浩;刘洋

辽宁工程技术大学 电气与控制工程学院,辽宁 葫芦岛 125105国网葫芦岛供电公司 兴城市供电分公司,辽宁 葫芦岛 125100

动力与电气工程

串联型电弧故障深度卷积神经网络故障检测故障选线优化分析

series arc faultdeep convolutional neural networkfault detectionfault line selectionoptimization analysis

《辽宁工程技术大学学报(自然科学版)》 2024 (001)

强电流滑动摩擦副表面粗糙度特性及其对电接触性能的影响

77-84 / 8

国家自然科学基金项目(52104160,52077158);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-29)

10.11956/j.issn.1008-0562.2024.01.010

评论