| 注册
首页|期刊导航|科技创新与应用|基于正则化YOLO的钢表面缺陷检测方法

基于正则化YOLO的钢表面缺陷检测方法

邓焕

科技创新与应用2024,Vol.14Issue(11):168-172,5.
科技创新与应用2024,Vol.14Issue(11):168-172,5.DOI:10.19981/j.CN23-1581/G3.2024.11.040

基于正则化YOLO的钢表面缺陷检测方法

邓焕1

作者信息

  • 1. 湖南工业大学,湖南 株洲 412007
  • 折叠

摘要

Abstract

Steel surfaces often display intricate texture patterns that are similar to defects,posing a challenge to accurately i-dentify actual defects.In this study,a steel surface defect detection method based on the regularised YOLO framework is proposed based on the baseline model YOLOv8s.Firstly,coordinate attention(CA)is embedded in the C2F framework to enhance the fea-ture extraction capability of the backbone network using a lightweight attention module.Secondly,the neck design employs de-formable convolution(DCN)to weight the fusion of multi-scale feature maps to enhance the feature fusion capability.Finally,the loss function of the model is regularised to improve the generalisation performance of the model.The model achieves 77.94%mAP0.5 on the NEU-DET dataset.a 2.39%improvement over the baseline model.The method proved to be more suitable for in-dustrial inspection.

关键词

YOLOv8s/钢表面缺陷检测/CA/DCN/正则化

Key words

YOLOv8s/Steel Surface Defect Detection/CA/DCN/regularization

分类

矿业与冶金

引用本文复制引用

邓焕..基于正则化YOLO的钢表面缺陷检测方法[J].科技创新与应用,2024,14(11):168-172,5.

科技创新与应用

2095-2945

访问量0
|
下载量0
段落导航相关论文