|国家科技期刊平台
首页|期刊导航|南京工业大学学报(自然科学版)|树脂基防隔热一体化热防护复合材料高温性能演变分析

树脂基防隔热一体化热防护复合材料高温性能演变分析OACHSSCDCSTPCD

Analysis of the evolution of high temperature performance of resin-based anti-insulation integrated thermal protection composites

中文摘要英文摘要

采用溶胶-凝胶-常压干燥的方法,以耐热杂化酚醛树脂(PF)为基体,复合碳纤维编织物(CF)制备树脂基防隔热一体化热防护复合材料(PF/CF-HT01).利用热分析(TG)、电子万能试验机研究材料热稳定性和高温力学性能,利用氧乙炔装置研究材料耐烧蚀性能,利用扫描电子显微镜(SEM)、X线衍射仪(XRD)研究材料微观结构演变过程.结果表明:空气中树脂基体的初始分解温度为387.3 ℃,最大分解温度为644.7 ℃,800℃时残炭率为13.8%;复合材料初始分解温度为405.3 ℃,800 ℃时残炭率为42.8%;复合材料常温压缩强度最大为542.6 MPa,经1 000℃原位热处理30和60s后的最大压缩强度分别为166.2和149.9 MPa.复合材料具有良好的防隔热一体化性能,其线烧蚀率可达0.039 mm/s,单次热考核结束时背温低于100 ℃、继续热传导后最高背温低于200 ℃.高温作用下材料快速陶瓷化形成致密的SiO2和BN瓷化层,赋予材料突出的耐烧蚀抗冲刷性能,而底层仍然保留着多孔结构使得材料保持较好的隔热性能.

The resin-based integrated thermal protection composite(PF/CF-HT01)was prepared using sol-gel atmospheric drying method,with heat-resistant phenolic resin(PF)as the matrix and carbon fiber braid(CF)as the composite material.The thermal stability and high-temperature mechanical properties of the material were studied using thermogravimetric analysis(TG)and an electronic universal testing machine.Ablation resistance of the material was evaluated using an oxyacetylene device,while the microstructure evolution of the material was examined through scanning electron microscopy(SEM)and X-ray diffraction(XRD).The results showed that the initial decomposition temperature of the resin matrix was 387.3 ℃,with a maximum decomposition temperature of 644.7 ℃.The residual carbon rate was 13.8%at 800 ℃.For the composite material,the initial decomposition temperature was 405.3 ℃,and the residual carbon rate reached 42.8%at 800 ℃.The compressive strength of the composite material was 542.6 MPa at room temperature.After in-situ heat treatment at 1 000 ℃ for 30 s and 60 s,the maximum compressive strengths were 166.2 MPa and 149.9 MPa,respectively.The composite material exhibited excellent thermal insulation integration performance,with a line ablation rate of 0.039 mm/s.After a single thermal shock assessment,the back temperature remained below 100 ℃,and even after continued thermal conduction,the maximum back temperature did not exceed 200 ℃.The rapid carbonization of the material under high-temperature conditions,leading to the formation of dense SiO2 and BN porcelain layer,conferred outstanding ablation resistance and scouring resistance.Meanwhile,the underlying layer retained its porous structure,maintaining good thermal insulation properties.

李昊;宋世聪;张炫烽;王国庆;王程豪;吴伟旭;朱小飞;吴战武

海军装备部装备审价中心,北京 100071上海航天化工应用研究所,浙江湖州 313002

树脂基热防护材料防隔热一体化高温热考核多孔材料固体火箭发动机隔热材料酚醛树脂碳纤维

resin-based thermal protection materialsthermal insulation integrationhigh-temperature thermal examinationsporous materialssolid rocket motorsthermal insulation materialsphenolic resincarbon fiber

《南京工业大学学报(自然科学版)》 2024 (002)

180-187 / 8

10.3969/j.issn.1671-7627.2024.02.007

评论