基于重要区域定位与掩码的射频指纹可视化分析OA北大核心CSTPCD
Visual analysis method for RF fingerprint based on important region localization and masking
针对时域脉冲信号样本的射频指纹提取与深度学习模型的可解释性,提出了一种基于Grad-CAM的重要区域可视化呈现方法,并通过重要区域的多次掩码测试,来分析重要区域对射频指纹识别结果的影响.基于 10 个辐射源的信号样本,对比了层数不同的两种ResNet模型的测试结果.测试发现该方法能够区分不同类型信号并呈现个体差异.分析表明,该方法能够发现不同辐射源发送相同信号时的重要区域定位差异,能可视化反映辐射源个体特征的空间距离,以及不同模型的特征表征与指纹定位准确度差异;同时发现对重要区域的掩码更容易产生误预测,证明特定信号存在与时频特征相关的射频指纹,并可辅助可视化定位影响射频指纹样本识别的关键点.
A Grad-CAM based visualizing method for important regions is proposed for the interpretability of RF fingerprint extraction and deep learning models of time-domain pulse signal samples.The impact of important regions on RF fingerprint recognition results is analyzed through multiple mask tests of important regions.Based on signal samples of 10 emitters,the test results of two ResNet models with different layers are compared.It is found that the proposed method can distinguish different types of signals and present individual differences.Analysis shows that this method can detect important regional localization differences when different emitters send the same signal,and can visually reflect the spatial distance of RF fingerprint characteristics,as well as the differences in feature representation and fingerprint localization accuracy of different models;At the same time,it is found that masks for important areas are more prone to false predictions,which proves the existence of RF fingerprints related to time-frequency characteristics in specific signals,and can assist in visualizing key points that affect the recognition of RF fingerprint samples.
刘文斌;范平志;杨佳煌;李雨锴;王钰浩;孟华
西南交通大学信息科学与技术学院,成都 611756||中国电子科技集团公司第三十研究所,成都 610041西南交通大学信息科学与技术学院,成都 611756西南交通大学数学学院,成都 611756
电子信息工程
可解释性射频指纹深度学习可视化信号特征
interpretabilityradio frequency fingerprintdeep learningvisualizationsignal characteristics
《强激光与粒子束》 2024 (004)
137-144 / 8
西南交通大学交叉培育项目(2682023TPY027)
评论