|国家科技期刊平台
首页|期刊导航|水力发电|基于差分序列多尺度深度学习的径流量预测方法

基于差分序列多尺度深度学习的径流量预测方法OACSTPCD

A Runoff Prediction Method Based on Multi-scale Deep Learning of Differential Sequence

中文摘要英文摘要

精准的径流量预报是预防洪水事故的主要依据.由于径流量数据具有很强的非稳定性,径流信息难以通过单一方法充分挖掘,易导致预测精度较低,提出了基于差分序列多尺度深度学习的径流量预测方法.首先,计算径流量一阶差分序列,为模型建立提供建模样本;其次,针对差分序列波动性,采用变分模态分解(VMD)方法对其进行变换,对变换后得到的差分序列分量采用多尺度LSTM方法对其进行估计;最后,结合原始径流量尾部数据和差分序列预测结果得到径流量预测值.结果表明,基于差分序列建模方法能够实现误差自适应校正,同时多尺度深度学习方法解决了数据波动特性,整体预测性能优越.

Accurate forecasting of runoff is the main basis for preventing flooding accidents.Due to the strong non-stationarity of runoff data,runoff information is difficult to be fully mined by a single method,which easily leads to low prediction accuracy.In this paper,a runoff prediction method based on multi-scale deep learning of differential sequence is proposed.Firstly,the first-order differential series of runoff is calculated to provide modeling samples for model building.Secondly,aiming at the volatility of differential series,the variational mode decomposition(VMD)method is used to transform the difference series,and the multi-scale LSTM method is used to estimate the components of the transformed difference series.Finally,the runoff prediction is obtained by combining the original runoff tail data and the differential series prediction results.The results show that the proposed modeling method based on differential series can realize adaptive error correction,while the multi-scale deep learning method solves the data fluctuation characteristics,and the overall prediction performance is superior.

张少卿;陈义浦;王世辉;沈昊;刘雨

南京市水利规划设计院股份有限公司,江苏 南京 210014苏州市水利设计研究院有限公司,江苏 苏州 215011江苏省水利勘测设计研究院有限公司,江苏 扬州 225127淮安市水利勘测设计研究院有限公司,江苏 淮安 223005

地球科学

径流量预测差分序列LSTM多尺度变分模态分解(VMD)深度学习

runoff predictiondifferential sequenceLSTM,multi-scale,variational mode decomposition(VMD)deep learning

《水力发电》 2024 (004)

19-25 / 7

2021年江苏省水利科技项目(2021068);2022年江苏省水利科技项目(2022011)

评论