多层级协同的地铁应急救援基地选址优化OA
Multi-level Collaborative Site Optimization for Subway Emergency Rescue Base
地铁系统面对灾害、事故时具有天然的脆弱性,随着各大城市的地铁进入网络化运营时代,我国地铁应急救援基地存在选址不合理、救援效率低等问题,而现有研究缺少层级性和协同救援的考虑.为此,以时间惩罚值最小、平均救援距离最短、选址个数最少为目标,以救援时间为约束,建立了多层级协同的地铁应急救援基地选址多目标优化模型,设计了遗传算法进行求解,并以南昌地铁为例进行了案例分析.研究结果表明:相比于单道路救援和单地铁救援的选址方案,采用协同救援的区域级地铁应急救援基地在时间惩罚函数值上分别降低了71.54%和73.82%,在平均救援时间上分别降低了14.71%和20.58%,在选址个数上分别降低了20.83%和9.52%.
Subway systems feature natural vulnerability to disasters and accidents.As the subways of major cities are entering a network-operated era,problems such as unreasonable site selection and low rescue efficiency emerge in China's subway emergency rescue bases.However,the existing research lacks consideration of hierarchy and collaborative rescue.Therefore,by adopting rescue time as a constraint,this paper proposed a multi-level collaborative multi-objective optimization model for site selection of subway emergency rescue bases to realize minimized time penalties,reduced average rescue distances,and the least number of selected sites.Meanwhile,a genetic algorithm was designed for the solution,and a case study was conducted by taking Nanchang Metro as an example.The results demonstrate that compared with single road rescue and single subway rescue,the regional-level subway emergency rescue bases that adopt collaborative rescue reduces the values of time penalty function by 71.54%and 73.82%,the average rescue time by 14.71%and 20.58%,and the number of selected sites by 20.83%and 9.52%respectively.
张宇;韩梅;汤兆平;米希伟
北京交通大学 交通运输学院,北京 100044华东交通大学 交通运输工程学院,江西 南昌 330013
交通运输
地铁应急救援基地选址研究多层级协同遗传算法
SubwayEmergency Rescue BaseSite Selection StudyMulti-LevelCoordinationGenetic Algorithm
《铁道运输与经济》 2024 (004)
161-171 / 11
国家自然科学基金项目(52102471);中央高校基本科研业务费专项资金科技领军人才团队项目(2022JBXT008)
评论