| 注册
首页|期刊导航|生殖医学杂志|基于人工智能的体外受精-胚胎移植患者需求的大数据分析

基于人工智能的体外受精-胚胎移植患者需求的大数据分析

林嘉雨 李晶洁 常亚杰 李婷婷 陈攀 庄德恩 李永芳 陈伟熙 王艳芳 梁晓燕

生殖医学杂志2024,Vol.33Issue(4):479-486,8.
生殖医学杂志2024,Vol.33Issue(4):479-486,8.DOI:10.3969/j.issn.1004-3845.2024.04.010

基于人工智能的体外受精-胚胎移植患者需求的大数据分析

Big data analytics in disclosing IVF-ET patients'deeds based on artificial intelligence

林嘉雨 1李晶洁 2常亚杰 3李婷婷 3陈攀 4庄德恩 5李永芳 3陈伟熙 3王艳芳 3梁晓燕2

作者信息

  • 1. 中山大学附属第六医院北院区生殖医学中心,广州 510000||香港大学李嘉诚医学院妇产科系,香港 999077
  • 2. 中山大学附属第六医院北院区生殖医学中心,广州 510000||广州市黄埔区中六生物医学创新研究院,广州 510700
  • 3. 中山大学附属第六医院北院区生殖医学中心,广州 510000
  • 4. 中山大学附属第一医院药学部,广州 510080
  • 5. 杭州火石数智科技有限公司,杭州 310051
  • 折叠

摘要

Abstract

Objective:To investigate the needs of the patients who were accepting or intended to accept in vitro fertilization-embryo transfer(IVF-ET)on social media based on artificial intelligence(AI)and big data analytics,which will provide a reference for medical staff. Methods:By collecting internet data and using algorithm modeling,we collected the information exchanged by IVF-ET patients on social media from 2010 to 2019.And we analyzed the distribution of patients'age and gender,trends in online communication regarding health information,types of diseases patients suffered from,the medication,patients'concerns and the factors related to patients'emotion.R esults:During 2010-2019,IVF-ET patients had been increasingly sharing IVF-ET-related information on social media.The population of IVF-ET patients aged 30-35 was the largest on the Internet.Most of the patients who chose to consult IVF-ET-related information online were female infertile patients.In the case of medication,the most frequently mentioned drug was progesterone injection,the most frequently mentioned way of medication was vaginal administration,and the largest number of patients were treated with one kind of progesterone drugs.The main factors patients cared about were negative emotions,pregnancy indicators and economic factors.Patients who had failed in IVF-ET or received vaginal administration of progesterone were prone to have negative emotions. Conclusions:AI-based big data analytics can help specialists and nurses understand the actual needs of IVF-ET patients.Both clinicians and nurses need to strengthen education and instruct patients to establish correct understanding,as well as maintain a good emotional state.

关键词

体外受精与胚胎移植/人工智能/辅助生殖技术/需求/情绪

Key words

In vitro fertilization and embryo transfer/Artificial intelligence/Assisted reproductive technology/Needs/Emotion

分类

医药卫生

引用本文复制引用

林嘉雨,李晶洁,常亚杰,李婷婷,陈攀,庄德恩,李永芳,陈伟熙,王艳芳,梁晓燕..基于人工智能的体外受精-胚胎移植患者需求的大数据分析[J].生殖医学杂志,2024,33(4):479-486,8.

基金项目

国家重点研发计划(2021YFC2700400) (2021YFC2700400)

广东省科技计划项目(2016A020218006) (2016A020218006)

中山大学青年教师培训项目(19ykpy04) (19ykpy04)

生殖医学杂志

OACSTPCD

1004-3845

访问量0
|
下载量0
段落导航相关论文