|国家科技期刊平台
首页|期刊导航|物探与化探|基于特征加权的KNN模型岩性识别方法

基于特征加权的KNN模型岩性识别方法OACSTPCD

A method for identifying lithology based on a feature-weighted KNN model

中文摘要英文摘要

岩性识别是一项重要的地质工作,为固体矿产勘探与油气勘探奠定了坚实的地质基础.岩石物性是连接岩性和地球物理场的桥梁,可以通过物性之间的差异进行岩性识别,但不同岩石的物性数据往往存在一定重合,仅靠交会图无法准确地识别岩性.KNN(K近邻)模型是一种简单、直接的机器学习方法,准确度和灵敏度都很高,适用于多分类问题.基于此,本文将基于特征加权的KNN模型引入岩性识别中,该方法将传统KNN模型与属性特征的信息增益相结合,对不同特征赋予不同权重,可以直观地反映属性特征对分类的重要程度.实验证明,相比于传统KNN方法,基于特征加权的KNN模型对岩性交界处的识别能力有大幅提升,整体提高了岩性识别的准确性和稳定性.

Lithology identification,as a major geological task,strongly underpins the exploration of solid minerals,oil,and gas.Since the physical properties of rocks bridge lithologies and geophysical fields,their differences can be used for lithology identification.How-ever,the physical property data of different rocks frequently overlap to some extent,posing challenges to accurate lithology identifica-tion using cross plots alone.The K-nearest neighbor(KNN)model is suitable for multi-class classification since it is a simple and di-rect machine learning method with high accuracy and sensitivity.This study introduced a feature-weighted KNN model for lithology i-dentification.In this model,different weights were assigned to different features by combining the conventional KNN model with the in-formation gain of attribute features.This allowed for intuitive reflection of the importance of attribute features to classification.Experi-ments show that compared to the conventional KNN model,the feature-weighted KNN model can more significantly identify lithologic boundaries,thus improving the overall accuracy and stability of lithology identification.

郭雨姗;王万银

长安大学 地质工程与测绘学院,陕西 西安 710054长安大学 地质工程与测绘学院,陕西 西安 710054||中国科学院 海洋地质与环境重点实验室,山东 青岛 266071||海洋油气勘探国家工程研究中心,北京 100028

地质学

KNN岩性识别信息增益特征权重

KNNlithology identificationinformation gainfeature weight

《物探与化探》 2024 (002)

428-436 / 9

中海石油有限公司科技项目"中国近海盆地潜在富油凹陷资源潜力、成藏机制与突破方向"之课题"中国近海潜在富油凹陷深部构造差异性研究"项目(CCL2021RCPS0167KQN)

10.11720/wtyht.2024.1260

评论