| 注册
首页|期刊导航|物探与化探|基于特征加权的KNN模型岩性识别方法

基于特征加权的KNN模型岩性识别方法

郭雨姗 王万银

物探与化探2024,Vol.48Issue(2):428-436,9.
物探与化探2024,Vol.48Issue(2):428-436,9.DOI:10.11720/wtyht.2024.1260

基于特征加权的KNN模型岩性识别方法

A method for identifying lithology based on a feature-weighted KNN model

郭雨姗 1王万银2

作者信息

  • 1. 长安大学 地质工程与测绘学院,陕西 西安 710054
  • 2. 长安大学 地质工程与测绘学院,陕西 西安 710054||中国科学院 海洋地质与环境重点实验室,山东 青岛 266071||海洋油气勘探国家工程研究中心,北京 100028
  • 折叠

摘要

Abstract

Lithology identification,as a major geological task,strongly underpins the exploration of solid minerals,oil,and gas.Since the physical properties of rocks bridge lithologies and geophysical fields,their differences can be used for lithology identification.How-ever,the physical property data of different rocks frequently overlap to some extent,posing challenges to accurate lithology identifica-tion using cross plots alone.The K-nearest neighbor(KNN)model is suitable for multi-class classification since it is a simple and di-rect machine learning method with high accuracy and sensitivity.This study introduced a feature-weighted KNN model for lithology i-dentification.In this model,different weights were assigned to different features by combining the conventional KNN model with the in-formation gain of attribute features.This allowed for intuitive reflection of the importance of attribute features to classification.Experi-ments show that compared to the conventional KNN model,the feature-weighted KNN model can more significantly identify lithologic boundaries,thus improving the overall accuracy and stability of lithology identification.

关键词

KNN/岩性识别/信息增益/特征权重

Key words

KNN/lithology identification/information gain/feature weight

分类

天文与地球科学

引用本文复制引用

郭雨姗,王万银..基于特征加权的KNN模型岩性识别方法[J].物探与化探,2024,48(2):428-436,9.

基金项目

中海石油有限公司科技项目"中国近海盆地潜在富油凹陷资源潜力、成藏机制与突破方向"之课题"中国近海潜在富油凹陷深部构造差异性研究"项目(CCL2021RCPS0167KQN) (CCL2021RCPS0167KQN)

物探与化探

OACSTPCD

1000-8918

访问量0
|
下载量0
段落导航相关论文