| 注册
首页|期刊导航|物探与化探|基于不同机器学习模型的石油测井数据岩性分类对比研究

基于不同机器学习模型的石油测井数据岩性分类对比研究

江丽 张智谟 王琦玮 封志兵 张博程 任腾飞

物探与化探2024,Vol.48Issue(2):489-497,9.
物探与化探2024,Vol.48Issue(2):489-497,9.DOI:10.11720/wtyht.2024.1492

基于不同机器学习模型的石油测井数据岩性分类对比研究

Comparative study on lithology classification of oil logging data based on different machine learning models

江丽 1张智谟 2王琦玮 3封志兵 2张博程 2任腾飞2

作者信息

  • 1. 东华理工大学 放射性地质与勘探国防重点学科实验室,江西 南昌 330013
  • 2. 东华理工大学核资源与环境国家重点实验室,江西 南昌 330013
  • 3. 中国石油辽河油田辽兴油气开发公司,辽宁盘锦 124000
  • 折叠

摘要

Abstract

Specific computational tools assist geologists in identifying and classifying the lithology of rocks in oil well exploration,reduc-ing costs,and enhancing operational efficiency.Machine learning methods integrate a vast amount of information,enabling efficient pat-tern recognition and accurate decision-making.This article categorizes the lithology of five oil wells in the Norwegian Sea,randomly di-viding the data into a training set(70%)and a test set(30%).Using multivariate well log parameter data for training and validation,the application effectiveness of models such as Multilayer Perceptron(MLP),Decision Tree,Random Forest,and XGBoost is com-pared.The research results indicate that the XGBoost model outperforms others in terms of data generalization,achieving an accuracy of 95%.The Random Forest model follows with an accuracy of 94%.Meanwhile,Multilayer Perceptron(MLP)and Decision Tree models exhibit good robustness,with accuracies of 92%and 90%,respectively.

关键词

岩性识别/机器学习/石油测井/XGBoost算法/随机森林

Key words

lithology identification/machine learning/oil logging/XGBoost gorithm/random forest

分类

天文与地球科学

引用本文复制引用

江丽,张智谟,王琦玮,封志兵,张博程,任腾飞..基于不同机器学习模型的石油测井数据岩性分类对比研究[J].物探与化探,2024,48(2):489-497,9.

基金项目

放射性地质与勘探国防重点学科实验室开放基金(2020RGET06) (2020RGET06)

江西省教育厅科学技术研究项目(GJJ220075) (GJJ220075)

中国铀业有限公司—东华理工大学核资源与环境国家重点实验室联合创新基金项目(2023NRE-LH-08) (2023NRE-LH-08)

中国核工业地质局生产中科研项目(202311-5) (202311-5)

东华理工大学博士科研启动基金项目(DHBK2019087) (DHBK2019087)

物探与化探

OACSTPCD

1000-8918

访问量0
|
下载量0
段落导航相关论文