一例整合了三联吡啶钌和卟啉锌的金属-有机框架材料用于光催化二氧化碳还原全反应OA北大核心CSTPCD
Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction
利用源源不断的太阳能,将CO2和水转化为增值化学品,是缓解温室效应与能源危机的一种有前途的方法.由于催化体系中的不同功能性部分难以实现氧化与还原反应的耦合,使用水作为还原剂实现光催化CO2还原是一项具有挑战性的工作.金属有机框架(metal-organic framework,MOF)由于其较大的比表面积、多样化的活性位点和结构可调性,是CO2光催化还原全反应的良好备选材料.本文中,我们首先整合了具有光活性的锌(Ⅱ)卟啉基元与联吡啶钌(Ⅱ)基元,构建了一种MOF光催化剂,记作PCN-224(Zn)-Bpy(Ru).为了进行比较,还合成了两种仅具有锌(Ⅱ)卟啉或联吡啶钌(Ⅱ)基元的同构MOF,分别记作PCN-224(Zn)-Bpy和PCN-224-Bpy(Ru).由测试结果可知,PCN-224(Zn)-Bpy(Ru)在乙腈和水混合溶液中表现出对CO2还原可观的光催化活性(CO产率为7.6 µmol·g-1·h-1),无需额外添加助催化剂、光敏剂或牺牲剂.通过质谱仪观测到13CO(m/z = 29)、13C18O(m/z = 31)、16O18O(m/z =34)和18O2(m/z = 36)信号,表明CO2和H2O分别作为CO和O2的碳源和氧源,这进一步证实了光催化CO2还原与H2O氧化的耦合.然而,在相同条件下对PCN-224-Bpy(Ru)与PCN-224(Zn)-Bpy的光催化性能进行测试,CO产率分别仅为1.5与0 µmol·g-1·h-1.机理研究表明,PCN-224(Zn)-Bpy(Ru)的最低未占据分子轨道(LUMO)电位比CO2/CO的氧化还原电位更负,而最高占据分子轨道(HOMO)电位比H2O/O2的氧化还原电位更正,在热力学上满足了光催化CO2还原全反应的要求.相比之下,不含联吡啶钌(Ⅱ)基元的PCN-224(Zn)-Bpy的HOMO电位更负于H2O/O2的氧化还原电位,这表明联吡啶钌(Ⅱ)基元在热力学上是光催化CO2还原全反应所必需的.此外,光致发光光谱中,荧光几乎被PCN-224(Zn)-Bpy(Ru)猝灭,且平均光致发光寿命比PCN-224(Zn)-Bpy和PCN-224-Bpy(Ru)更长,这表明PCN-224中光生载流子的复合率较低.与PCN-224(Zn)-Bpy和PCN-224-Bpy(Ru)相比,PCN-224的光电流更高,这一现象也支持了中后者光生载流子的复合率较低这一结论.总而言之,在光催化CO2还原过程中,锌卟啉(Ⅱ)配体既作为光敏单元,又作为CO2还原活性位点,而联吡啶钌(Ⅱ)基元与锌(Ⅱ)卟啉基元的结合可以优化光催化剂的能带结构,进而促进光催化CO2还原与H2O氧化的耦合,从而实现了高效光催化CO2还原全反应.
Efficiently converting CO2 and H2O into value-added chemicals using solar energy is a viable approach to address global warming and the energy crisis.However,achieving artificial photocatalytic CO2 reduction using H2O as the reductant poses challenges is due to the difficulty in efficient cooperation among multiple functional moieties.Metal-organic frameworks(MOFs)are promising candidates for overall CO2 photoreduction due to their large surface area,diverse active sites,and excellent tailorability.In this study,we designed a metal-organic framework photocatalyst,named PCN-224(Zn)-Bpy(Ru),by integrating photoactive Zn(Ⅱ)-porphyrin and Ru(Ⅱ)-bipyridyl moieties.In comparison,two isostructural MOFs just with either Zn(Ⅱ)-porphyrin or Ru(Ⅱ)-bipyridyl moiety,namely PCN-224-Bpy(Ru)and PCN-224(Zn)-Bpy were also synthesized.As a result,PCN-224(Zn)-Bpy(Ru)exhibited the highest photocatalytic conversion rate of CO2 to CO,with a production rate of 7.6 µmol·g-1·h-1 in a mixed solvent of CH3CN and H2O,without the need for co-catalysts,photosensitizers,or sacrificial agents.Mass spectrometer analysis detected the signals of 13CO(m/z = 29),13C18O(m/z = 31),16O18O(m/z = 34),and 18O2(m/z = 36),confirming that CO2 and H2O acted as the carbon and oxygen sources for CO and O2,respectively,thereby confirming the coupling of photocatalytic CO2 reduction with H2O oxidation.In contrast,using PCN-224-Bpy(Ru)or PCN-224(Zn)-Bpy as catalysts under the same conditions resulted in significantly lower CO production rates of only 1.5 and 0 µmol·g-1·h-1,respectively.Mechanistic studies revealed that the lowest unoccupied molecular orbital(LUMO)potential of PCN-224(Zn)-Bpy(Ru)is more negative than the redox potentials of CO2/CO,and the highest occupied molecular orbital(HOMO)potential is more positive than that of H2O/O2,satisfying the thermodynamic requirements for overall photocatalytic CO2 reduction.In comparison,the HOMO potential of PCN-224(Zn)-Bpy without Ru(Ⅱ)-bipyridyl moieties is less positive than that of H2O/O2,indicating that the Ru(Ⅱ)-bipyridyl moiety is thermodynamically necessary for CO2 reduction coupled with H2O oxidation.Additionally,photoluminescence spectroscopy revealed that the fluorescence of PCN-224(Zn)-Bpy(Ru)was almost completely quenched,and a longer average photoluminescence lifetime compared to PCN-224(Zn)-Bpy and PCN-224-Bpy(Ru)was observed.These suggest a low recombination rate of photogenerated carriers in PCN-224(Zn)-Bpy(Ru),which also supported by the higher photocurrent observed in PCN-224(Zn)-Bpy(Ru)compared to PCN-224(Zn)-Bpy and PCN-224-Bpy(Ru).In summary,the integrated Zn(Ⅱ)-porphyrin and Ru(Ⅱ)-bipyridyl moieties in PCN-224(Zn)-Bpy(Ru)play important roles of a photosensitizer and CO2 reduction as well as H2O oxidation sites,and their efficient cooperation optimizes the band structure,thereby facilitating the coupling of CO2 reduction with H2O oxidation and resulting in high-performance artificial photocatalytic CO2 reduction.
陈慧滢;朱浩林;廖培钦;陈小明
中山大学化学学院,生物无机与合成化学教育部重点实验室,广州 510275
化学
金属有机框架锌(Ⅱ)卟啉衍生物联吡啶(Ⅱ)钌配合物光生电荷光催化CO2还原
Metal-organic frameworkZn(Ⅱ)porphyrinRu(Ⅱ)bipyridyl complexPhotogenerated chargeCO2 photoreduction
《物理化学学报》 2024 (004)
4-10 / 7
The project was supported by the National Key Research and Development Program of China(2021YFA1500401),the National Natural Science Foundation of China(21890380 and 21821003),the Local Innovative and Research Teams Project of the Guangdong Pearl River Talents Program,China(2017BT01C161),and the Technology Innovation Strategy Special City and County Science and Technology Innovation Support Project,China(STKJ2023078).国家重点研发计划(2021YFA1500401),国家自然科学基金(21890380,21821003),广东省"珠江人才计划"本土创新科研团队项目(2017BT01C161)和广东省科技创新战略专项市县科技创新支撑项目(STKJ2023078)资助
评论