在过渡金属催化剂上的C―C键断裂以实现生物质的升级OA北大核心CSTPCD
Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts
将当前能源生产和消费结构从过度依赖化石能源转变为高效利用可再生能源,是解决能源危机、实现碳中和的有效途径.生物质是最有前途的可再生能源之一,可以取代化石燃料以获得有价值的有机化合物.近年来,大力利用生物质能已成为一种必然趋势.用于生物质转化的传统热化学催化方法通常需要高温、高压等恶劣条件,甚至还需要外部氢或氧源.相比之下,在相对温和的条件下进行的生物质有机分子电催化转化为生产高价值化学品提供了一种绿色高效的策略.特别是,通过C―C键裂解将生物质衍生的分子转化为高价值的短链化学品至关重要.近年来,大量的研究证明过渡金属(TM)电催化剂由于其丰富的三维电子结构和独特的eg轨道增强了过渡金属-氧之间的共价键合,从而在有机物的C―C键断裂中起着至关重要的作用.此外,TM电催化剂的配位环境或电子结构会影响产物的选择性.毫无疑问,明确的反应活性位点和途径有助于深入理解催化剂结构与反应活性之间的构效关系.然而,TM电催化剂介导的生物质衍生有机分子的C―C键裂解反应用于生物质升级的研究目前尚处于起步阶段,其反应机理和催化反应过程尚不清楚.因此,有必要在原子水平上系统地了解电催化剂在C―C键裂解过程中的作用.在本综述中,我们首先依次介绍了广泛研究的TM电催化剂介导的生物质衍生有机分子(包括甘油、环己醇、木质素和糠醛)的C―C键裂解反应,并给出了一些典型的例子和相应的反应途径.然后,系统回顾了过渡金属化合物催化C―C键裂解的反应机理,揭示了界面行为,并构建了TM电催化剂的结构与裂解反应活性之间的构效关系.最后,我们简要总结了上述内容,并强调了在TM电催化剂上研究C―C键裂解的挑战和展望.我们期望这项工作可以为生物质的可控转化和合理设计C―C键裂解的TM电催化剂提供指导.
Transforming the current structure of energy production and consumption,which currently excessively relies on fossil fuels,into a more efficient utilization of renewable energy,is an effective solution for addressing the energy crisis and achieving carbon neutrality.Biomass represents one of the most promising sources of renewable energy,capable of replacing fossil fuels and yielding valuable organic compounds.In recent years,the vigorous utilization of biomass energy sources has become an inevitable trend.The conventional thermochemical catalysis method used for biomass conversion often requires harsh conditions,such as high temperatures and pressures,and even external sources of hydrogen or oxygen.In comparison,the electrocatalytic conversion of organic molecules derived from biomass offers a greener and more efficient strategy for producing high-value chemicals under relatively mild conditions.Particularly,the cleavage of carbon chains through C―C bond cleavage is crucial in transforming biomass-derived molecules into short-chain chemicals of high value.Numerous studies have demonstrated that transition metal(TM)electrocatalysts play a critical role in the C―C bond cleavage of organic compounds,owing to their rich 3d electron structure and unique eg orbitals that enhance the covalence of transition metal-oxygen bonds.Moreover,the coordination environments and electronic structures of TM electrocatalysts can influence the selectivity of the products.Undoubtedly,well-defined active sites and reaction pathways facilitate a comprehensive understanding of the structure-activity relationship between catalyst structure and reaction activity.However,the electrocatalytic cleavage of C―C bonds for biomass upgrading on TM electrocatalysts is still in its initial stages,and the reaction mechanism and catalytic processes remain unclear.Therefore,there is a need to systematically comprehend the role of electrocatalysts at the atomic level during the C―C bond cleavage process.This review begins by providing an overview of the extensively studied TM electrocatalysts that mediate C―C bond cleavage reactions of organic molecules derived from biomass,including glycerol,cyclohexanol,lignin,and furfural.Several representative examples and corresponding reaction pathways are presented.Subsequently,we systematically review the reaction mechanisms underlying the catalytic C―C bond cleavage by transition metal compounds,elucidate interfacial behaviors,and establish a structure-activity relationship between the structure of TM electrocatalysts and cleavage reaction activity.Finally,we provide a brief summary of the content covered and highlight the challenges and prospects in exploring C―C bond cleavage on TM electrocatalysts.It is anticipated that this work will serve as a guide for the controlled conversion of biomass and the rational design of TM electrocatalysts for C―C bond cleavage.
卢卓然;李圣凯;逯宇轩;王双印;邹雨芹
湖南大学化学与化工学院,化学/生物传感与化学计量学国家重点实验室,教育部先进催化工程研究中心,长沙 410082湖南大学化学与化工学院,化学/生物传感与化学计量学国家重点实验室,教育部先进催化工程研究中心,长沙 410082||湖南大学深圳研究院,广东 深圳 518057湖南大学化学与化工学院,化学/生物传感与化学计量学国家重点实验室,教育部先进催化工程研究中心,长沙 410082||吉首大学化学与化学工程学院,湖南 吉首 416000
化学
电催化生物质升级C―C键断裂电催化过渡金属催化剂
Electrocatalytic biomass upgradingC―C bond cleavageElectrocatalysisTransition metal catalyst
《物理化学学报》 2024 (004)
89-106 / 18
The project was supported by the National Key R&D Program of China(2020YFA0710000),the National Natural Science Foundation of China(22122901),the Provincial Natural Science Foundation of Hunan,China(2021JJ0008,2021JJ20024,2021RC3054),the Shenzhen Science and Technology Program,China(JCYJ20210324140610028).国家重点研发计划(2020YFA0710000),国家自然科学基金(22122901),湖南省自然科学基金(2021JJ0008,2021JJ20024,2021RC3054),深圳市科技计划(JCYJ20210324140610028)资助项目
评论