基于相似度加速的自适应聚类联邦学习OA北大核心CSTPCD
Adaptive clustering federated learning via similarity acceleration
为了解决联邦学习过程中数据异质性导致模型性能下降的问题,考虑对联邦模型个性化,提出了一种新的基于相似度加速的自适应聚类联邦学习(ACFL)算法,基于客户端本地更新的几何特性和客户端联邦时的正向反馈实现自适应加速聚类,将客户端划分到不同任务簇,同簇中数据分布相似的客户端协同实现聚类联邦学习(CFL),从而提升模型性能.该算法不需要先验确定类簇数量和迭代划分客户端,在避免现有基于聚类的联邦算法计算成本过高、收敛速度慢等问题的同时保证了模型性能.在常用数据集上使用深度卷积神经网络验证了ACFL的有效性.结果表明,所提算法性能与聚类联邦学习算法相当,优于传统的迭代联邦聚类算法(IFCA),且具有更快的收敛速度.
In order to solve the problem of model performance degradation caused by data heterogeneity in the federated learning process,it is necessary to consider personalizing in the federated model.A new adaptively clustering federated learning(ACFL)algorithm via similarity acceleration was proposed,achieving adaptive acceleration clustering based on geometric properties of local updates and the positive feedback mechanism during clients federated training.By dividing clients into different task clusters,clients with similar data distribution in the same cluster was cooperated to improve the performance of federated model.It did not need to determine the number of clusters in advance and iteratively divide the clients,so as to avoid the problems of high computational cost and slow convergence speed in the existing clustering fed-eration methods while ensuring the performance of models.The effectiveness of ACFL was verified by using deep con-volutional neural networks on commonly used datasets.The results show that the performance of ACFL is comparable to the clustered federated learning(CFL)algorithm,it is better than the traditional iterative federated cluster algorithm(IFCA),and has faster convergence speed.
朱素霞;顾玢珂;孙广路
哈尔滨理工大学计算机科学与技术学院,黑龙江 哈尔滨 150080||黑龙江省智能信息处理及应用重点实验室,黑龙江 哈尔滨 150080
计算机与自动化
联邦学习个性化聚类几何特性正向反馈
federated learningpersonalizationclusteringgeometric characteristicpositive feedback
《通信学报》 2024 (003)
197-207 / 11
黑龙江省自然科学基金资助项目(No.LH2021F032);黑龙江省重点研发计划基金资助项目(No.2022ZX01A34) The Natural Science Foundation of Heilongjiang Province(No.LH2021F032),The Key Research and Develop-ment Program of Heilongjiang Province(No.2022ZX01A34)
评论