| 注册
首页|期刊导航|燕山大学学报|基于聚类与稀疏字典学习的近似消息传递

基于聚类与稀疏字典学习的近似消息传递

司菁菁 王亚茹 王爱婷 程银波

燕山大学学报2024,Vol.48Issue(2):157-164,8.
燕山大学学报2024,Vol.48Issue(2):157-164,8.DOI:10.3969/j.issn.1007-791X.2024.02.006

基于聚类与稀疏字典学习的近似消息传递

Clustering and sparse dictionary learning based approximate message passing

司菁菁 1王亚茹 2王爱婷 2程银波3

作者信息

  • 1. 燕山大学 信息科学与工程学院,河北 秦皇岛 066004||燕山大学 河北省信息传输与信号处理重点实验室,河北 秦皇岛 066004
  • 2. 燕山大学 信息科学与工程学院,河北 秦皇岛 066004
  • 3. 河北农业大学 海洋学院,河北 秦皇岛 066003
  • 折叠

摘要

Abstract

Dictionary learning based approximate message passing(AMP)has a high demand on the number of training samples,and its computational cost is high.The double sparse model is introduced to study sparse dictionary learning based AMP,which reduces the demand on the number of training samples in the iterations and improves imaging quality and efficiency.Furthermore,the clustering and sparse dictionary learning based AMP is proposed.In iterations,the clustered blocks are denoised adaptively with sparse dictionary learning.In comparison to traditional dictionary learning based AMP,the clustering and sparse dictionary learning based AMP can achieve 0.20~1.75 dB higher peak signal-to-noise ratio of the reconstructed images,and improve the computational efficiency by 89%in average.

关键词

图像重构/近似消息传递/字典学习/稀疏字典/聚类

Key words

image reconstruction/approximate message passing/dictionary learning/sparse dictionary/clustering

分类

信息技术与安全科学

引用本文复制引用

司菁菁,王亚茹,王爱婷,程银波..基于聚类与稀疏字典学习的近似消息传递[J].燕山大学学报,2024,48(2):157-164,8.

基金项目

河北省自然科学基金资助项目(F2021203027) (F2021203027)

燕山大学基础创新科研培育项目(2021LGZD011) (2021LGZD011)

河北省重点实验室项目(202250701010046) (202250701010046)

燕山大学学报

OA北大核心CSTPCD

1007-791X

访问量0
|
下载量0
段落导航相关论文