基于特征图像组合与改进ResNet-18的电能质量扰动识别方法OA北大核心CSTPCD
Power Quality Disturbance Recognition Method Based on Feature Image Combination and Modified ResNet-18
针对传统电能质量扰动(power quality disturbance,PQD)识别体系中单一图像特征信息受限与算法识别能力不足等问题,依据特征融合的思想,提出一种基于特征图像组合与改进ResNet-18的PQD识别方法.首先,对PQD信号进行变分模态分解(variational mode decomposition,VMD)得到一系列固有模态函数(intrinsic mode functions,IMFs)与残差分量;其次,将 IMFs、残差分量、原始扰动信号与Subtract分量纵向拼接成分量矩阵,利用信号-图像转化方法生成特征分量彩色图;再次,对原始扰动信号进行连续小波变换(continuous wavelet transform,CWT)生成小波时-频图;最后,将特征分量彩色图与小波时-频图组合输入改进的六通道 ResNet-18 中训练学习并完成扰动识别.通过仿真对PQD 识别方法进行分析并将其与目前常用识别体系进行比较.结果表明,所提方法具有较好的抗噪性能并且能够更好地提取PQD特征信息,达到更高的识别准确率.
Aiming at the problems of limited single image feature information and insufficient algorithm recognition ability in traditional power quality disturbance(PQD)recognition schemes,a PQD recognition method based on feature image combination and modified ResNet-18 is proposed according to the idea of feature fusion.First,a series of intrinsic mode functions(IMFs)and residual components are obtained by variational mode decomposition(VMD)of PQD signals.Then,the IMFs,residual components,original disturbance signals and Subtract components are longitudinally spliced into component matrix,and the signal-image conversion method is used to generate the feature component color map.Meanwhile,continuous wavelet transform(CWT)is performed on the original disturbance signal to generate the wavelet time-frequency diagram.Finally,the feature component color map and wavelet time-frequency diagram are combinatorically input into the modified six-channel ResNet-18 training and the learning on how to recognize the PQD.The PQD recognition method is analyzed through simulation and compared with the commonly used recognition system.The results show that the proposed method has good anti-noise performance and can better extract the PQD feature information to achieve higher recognition accuracy.
张逸;欧杰宇;金涛;毕贵红
福州大学电气工程与自动化学院,福建省 福州市 350108昆明理工大学电力工程学院,云南省 昆明市 650500
动力与电气工程
电能质量扰动变分模态分解特征分量彩色图小波时-频图残差网络
power quality disturbancevariational mode decompositionfeature component color mapwavelet time-frequency diagramResNet
《中国电机工程学报》 2024 (007)
计及大功率驱动的电力电子化复杂电力系统谐波耦合机理分析与抑制方法研究
2531-2544,后插3 / 15
国家自然科学基金项目(51977039).Project Supported by National Natural Science Foundation of China(51977039).
评论