|国家科技期刊平台
首页|期刊导航|中国烟草学报|基于热分析图谱的卷烟配方原料分类分档模型构建与应用

基于热分析图谱的卷烟配方原料分类分档模型构建与应用OA北大核心CSTPCD

Construction and application of the classification model for cigarette blend raw material based on thermal analysis spectrum

中文摘要英文摘要

[目的]提高卷烟配方原料分类分档的工作效率,帮助配方人员客观掌握配方原料的年度间波动.[方法]提出一种热分析图谱结合支持向量机算法(SVM)对卷烟配方原料进行分类分档的新技术.采用python3 中sklearn中的SVM模块,通过核函数和one-against-all方法并选择合适的惩罚参数,对 2016-2018 年度的 129 个样品进行训练学习,并对 33 个样品进行测试.当模型预测准确率达到应用需求后,对 2019 年度46 个卷烟配方原料进行分类预测.[结果]129 个训练集样品的分类准确率为 93.02%,33 个样品测试集样品的分类准确率为 84.85%,46 个卷烟配方原料的分类准确率为 84.78%.

[Background]This study aims to improve the work efficiency of classification and grading of cigarette blend raw materials,and help formula personnel to objectively grasp the annual fluctuation of formula raw materials.[Methods]A new technique is proposed for classifying and grading cigarette blend raw materials by combining thermal analysis spectra with the Support Vector Machine(SVM)algorithm.The SVM module in sklearn of python3 is used,and through the kernel function and one-against-all method and selecting appropriate penalty parameters,129 samples from the years 2016-2018 are trained,and 33 samples are tested.After determining the prediction accuracy of the model,the model was applied to the classification evaluation of 46 samples in 2019.[Results]The classification accuracy rate of the 129 training set samples was 93.02%,the classification accuracy rate of the 33 test set samples was 84.85%,and the classification accuracy rate of the 46 cigarette blend raw materials was 84.78%.

何伟;李菁菁;李巧灵;杨韧强;刘泽春;蔡国华;邓小华;叶仲力;熊哲;余志强;梁晖

福建中烟工业有限责任公司,技术中心,福建省厦门市集美区滨水路 298 号 361021华中科技大学,煤燃烧国家重点实验室,湖北省武汉市洪山区珞喻路 1037 号 430074

卷烟配方原料分类热分析图谱支持向量机

cigarette blend raw materialclassificationthermal analysis spectrumsupport vector machine

《中国烟草学报》 2024 (002)

1-10 / 10

福建中烟工业有限公司科技项目"片烟质量热分析技术数字化评价模型的构建及应用"(FJZYJH2021ZD007)

10.16472/j.chinatobacco.2022.T0236

评论