| 注册
首页|期刊导航|中国烟草学报|基于模型预测控制的松散回潮自适应控制系统

基于模型预测控制的松散回潮自适应控制系统

赵春元 王略韬 张晓峰 于红丽 周成林 邓红伟 李秀芳

中国烟草学报2024,Vol.30Issue(2):27-37,11.
中国烟草学报2024,Vol.30Issue(2):27-37,11.DOI:10.16472/j.chinatobacco.2023.T0082

基于模型预测控制的松散回潮自适应控制系统

An adaptive control system of tobacco loosening and conditioning based on model predictive control

赵春元 1王略韬 2张晓峰 1于红丽 1周成林 2邓红伟 2李秀芳1

作者信息

  • 1. 河南中烟工业有限责任公司黄金叶生产制造中心,郑州市经开第三大街 9 号 450016
  • 2. 首域科技(杭州)有限公司,杭州市临平区新丰路 199 号 311100
  • 折叠

摘要

Abstract

To solve the problems of poor adaptive and unstable control in traditional control of moisture regain.Based on the working principle of the loose moisture regain machine and the mechanism of moisture absorption of tobacco leaves,three key variables:the moisture content of the material inlet,the amount of water added and the return air temperature,were selected.With the outlet moisture content of the material as the target value,a prediction model was established.To address control errors caused by model deviations,using model predictive control(MPC),the backpropagation algorithm in the neural network model was used to optimize the loss function tailored to the characteristics of the moisture regain process.By enabling the predictive model to self-iterate and adapt during the control process,the adaptability of the model is improved.After system optimization,the average standard deviation of loose regain outlet moisture decreased from 0.29 to 0.20,a year-on-year decrease of 32%,and the average CPK increased from 1.132 to 1.479,a year-on-year increase of 30%.This effectively improved the control ability of loose moisture regain process.

关键词

松散回潮/模型预测控制/自适应反向传播算法/损失函数

Key words

tobacco loosening and conditioning/model predictive control/adaptive back propagation algorithm/loss function

引用本文复制引用

赵春元,王略韬,张晓峰,于红丽,周成林,邓红伟,李秀芳..基于模型预测控制的松散回潮自适应控制系统[J].中国烟草学报,2024,30(2):27-37,11.

基金项目

基于广义预测控制的松散回潮控制系统推广应用研究(20184100033450054) (20184100033450054)

中国烟草学报

OA北大核心CSTPCD

1004-5708

访问量0
|
下载量0
段落导航相关论文