基于总设置时间与最大完工时间的柔性流水车间多目标优化研究OA北大核心CSTPCD
Multi-objective Optimization of Flexible Flow Shop Based on the Total Setup Time and the Makespan
本课题以最大完工时间及总设置时间为优化目标,提出了一种新的解码方案,并设计了混合快速非支配遗传算法,用于求解建立的生产调度模型,通过实验证明了模型的有效性及算法的先进性.结果表明,提出的解码方案最大可减少25.63%的总设置时间及3.42%的最大完工时间;混合快速非支配遗传算法则最大可减少28.42%的总设置时间及3.80%的最大完工时间.
Taking the makespan and total setup time as the optimization objectives,a new decoding scheme was created and a hybrid fast non-dominated genetic algorithm was designed to solve the established production scheduling model.Based on the experiments results,the effec-tiveness of the model and the advancement of the algorithm were carried out.The results showed that proposed decoding scheme could reduce the total setup time by 25.63%and the makespan by 3.42%.The hybrid fast non-dominated genetic algorithm could reduce the total setup time by 28.42%and the makespan by 3.80%.
曾志强;蔡文青
五邑大学智能制造学部,广东江门,529020
轻工业
生产调度柔性流水车间多目标优化
production schedulingflexible flow shopmulti-objective optimization
《中国造纸学报》 2024 (001)
82-90 / 9
广东省基础与应用基础研究基金(2020A1515011468);广东省普通高校特色创新类项目(2019KTSCX189).
评论