基于人工智能的CT影像加权评分系统对肺结节良恶性鉴别的价值OACSTPCD
目的探讨基于人工智能(AI)的CT影像加权评分系统对肺结节良恶性鉴别的价值。方法回顾性分析2021年1月至2022年9月在浙江中医药大学附属杭州市中医院经手术和病理证实的肺结节患者187例,共215个肺结节。术前CT图像导入AI肺结节CT影像辅助诊断系统,由该系统自动识别,得到结节的相关量化参数:结节数量、部位、类型、平均直径、体积,并提供每个肺结节的AI恶性概率数值。采用多因素logistic回归分析筛选良恶性肺结节鉴别诊断的独立影响因素,基于这些独立影响因素构建初级模型,并进行加权赋分得到综合加权评分。采用ROC曲线评估各个变量、初级模型和综合加权评分等相关指标对良恶性肺结节鉴别诊断的效能。结果215个肺结节中,良性肺结节69个,恶性肺结节146个。多因素logistic回归分析显示亚实性结节(OR=4.732)、AI恶性概率>0.6(OR=5.602)、医师阅片恶性(OR=28.654)是良恶性肺结节鉴别诊断的独立影响因素(均P<0.01),基于这些独立影响因素,构建初级模型。Hosmer-Lemshow检验显示初级模型具有良好的校准性(P=0.486)。比较综合加权评分、初级模型、结节特征、医师阅片、AI恶性概率的诊断效能,综合加权评分的AUC最高,为0.929。综合加权评分与初级模型的AUC比较差异无统计学意义(P>0.05),综合加权评分与医师阅片、结节特征、AI恶性概率的AUC比较差异均有统计学意义(均P<0.01)。为了简化放射科医师评估肺结节恶性风险的流程,将综合加权评分分成3个区间分数(<4分、4~6分、>6分)。随着综合加权评分的升高,肺结节被诊断为恶性的可能性也相应增加。结论基于AI技术构建的综合加权评分系统在良恶性肺结节鉴别诊断中具有较高的效能,有助于简化放射科医师的评估流程和临床决策的制定。
李志平;张永胜;徐辉景;陈文;康书朝;李焕国;张育;崔凤;杨勇;
浙江中医药大学附属杭州市中医院放射科,杭州310007浙江中医药大学附属杭州市中医院病理科,杭州310007浙江中医药大学附属杭州市中医院胸心外科,杭州310007
临床医学
人工智能肺结节评分系统鉴别诊断
《浙江医学》 2024 (007)
P.703-709 / 7
杭州市生物医药和健康产业发展扶持科技专项(2021WJCY014);杭州市卫生科技计划项目(A20220438)。
评论