| 注册
首页|期刊导航|安全、健康和环境|基于神经网络算法的等离子体负载动态参数模型

基于神经网络算法的等离子体负载动态参数模型

包涵春 郭亚逢 关银霞 李超 唐诗雅 杜宇

安全、健康和环境2024,Vol.24Issue(4):28-34,42,8.
安全、健康和环境2024,Vol.24Issue(4):28-34,42,8.DOI:10.3969/j.issn.1672-7932.2024.04.005

基于神经网络算法的等离子体负载动态参数模型

Dynamic Parameter Model of Plasma Loading Based on Neural Network Algorithm

包涵春 1郭亚逢 1关银霞 1李超 1唐诗雅 1杜宇1

作者信息

  • 1. 化学品安全全国重点实验室,山东青岛 266104||中石化安全工程研究院有限公司, 山东青岛 266104
  • 折叠

摘要

Abstract

Most plasma loading electrical models are based on fixed parameter models,ignoring the im-pact of changes in equivalent loading parameters on the model,which can easily lead to significant er-rors.In order to improve the errors caused by chan-ges in equivalent parameters,the variation of load parameters such as equivalent capacitance and e-quivalent resistance with the amplitude and frequen-cy of applied voltage was first investigated.Based on this,a BP neural network parameter adjustment module was trained,and a dynamic parameter mod-el of plasma load was established,achieving the up-date of load equivalent parameters under external excitation changes.The results showed that the sim-ulation accuracy using the neural network dynamic parameter model was 95.70%,while the simulation accuracy using the fixed parameter model was 82.89%,which improved the simulation accuracy by 15.45%,which was of great significance to sim-plify experimental workload and guide the design of plasma reactors.

关键词

介质阻挡放电/负载等效参数/等离子体电学模型/BP神经网络/动态参数模型

Key words

dielectric barrier discharge/load equiv-alent parameters/plasma electrical model/BP neu-ral network/dynamic parameter model

分类

资源环境

引用本文复制引用

包涵春,郭亚逢,关银霞,李超,唐诗雅,杜宇..基于神经网络算法的等离子体负载动态参数模型[J].安全、健康和环境,2024,24(4):28-34,42,8.

基金项目

中国石化科技部课题(KL323003),窄脉冲放电等离子体治理恶臭关键技术研究. (KL323003)

安全、健康和环境

1672-7932

访问量0
|
下载量0
段落导航相关论文