|国家科技期刊平台
首页|期刊导航|磁共振成像|基于MRI影像组学机器学习模型在脊髓型颈椎病危险度分级中的价值

基于MRI影像组学机器学习模型在脊髓型颈椎病危险度分级中的价值OA北大核心CSTPCD

Study on the ability to grade the risk of cervical spondylotic myelopathy by using machine learning model based on MRI radiomics

中文摘要英文摘要

目的 探讨基于MRI放射组学特征的机器学习(machine learning,ML)模型对脊髓型颈椎病(cervical spondylotic myelopathy,CSM)进行危险度分级的价值.材料与方法 回顾性分析临床诊断为CSM的患者病例317例,并使用日本骨科协会(Japanese Orthopaedic Association,JOA)评估治疗分数分为轻症组193例和中重度组124例.手动勾画脊髓轴位T2WI像生成感兴趣区(region of interest,ROI)并提取放射组学特征,使用Z-Score标准化进行统一量度,皮尔森相关系数(Pearson correlation coefficients,PCC)进行数据降维.使用递归特征消除(recursive feature elimination,RFE)进行特征筛选,并使用逻辑回归(logistic regression,LR)、自适应增强机(adaboost,AB)、贝叶斯算法(native Bayes,NB)及支持向量机(support vector machine,SVM)四种分类器模型来构建ML模型.通过受试者工作特征(receiver operating characteristic,ROC)曲线的曲线下面积(area under the curve,AUC)评价模型效能.结果 共筛选出15个放射组学特征用于模型构建,四种分类器中,SVM(训练组和验证组AUC分别为0.833和0.813)和LR(训练组和验证组AUC分别为0.831和0.812)模型分级能力较好,且较稳定,模型之间差异无统计学意义,AB分类器在训练组中分级能力最佳(AUC=0.984),但在验证组中能力欠佳(AUC=0.725),模型稳定性低于SVM和LR模型.结论 基于MRI影像组学的ML模型对CSM有良好危险度分级能力,能够为临床术前诊断提供一定参考价值.

Objective:To explore the value of machine learning(ML)model based on MRI radiomics features in grading the risk of cervical spondylotic myelopathy(CSM).Materials and Methods:This retrospective study included 317 patients diagnosed with cervical spondylotic myelopathy(CSM),according to the Japanese Orthopaedic Association(JOA)score they were divided into mild CSM group(193 patients)and moderate-severe CSM group(124 patients).Spinal cord in the transverse T2-weighted MR images were manually sketched to generate a region of interest(ROI)and extract radiomics features.The Z-Score standardization were used to unify metrics.The Pearson correlation coefficients(PCC)and recursive feature elimination(RFE)were used to reduce the dimension and select the feature.Various ML algorithms including logistic regression(LR),adaboost(AB),native bayes(NB),support vector machine(SVM)were used to build ML models.The area under the curve(AUC)of receiver operating characteristic were used to evaluate the diagnostic efficacy of the model.Results:A total of 15 radiomics salient features were selected to build models,SVM(training set AUC vs.test set AUC:0.833 vs.0.813)and LR(0.831 vs.0.812)have good grading ability and are more stable among the four classifiers,there were no statistically significant differences between the models.AB classifier has the best grading ability in the training group(AUC=0.984)but poor grading ability in the test group(AUC=0.725),The AB classifier model has lower stabilization than SVM and LR classifier model.Conclusions:ML model based on MRI radiomics has good risk grading ability for CSM,which can provide certain reference value for clinical preoperative diagnosis.

徐刚;陈鹏;李宇龙;朱芸;谢宗玉

安徽理工大学附属淮南新华医院医学影像科,淮南 232000湖州市中心医院放射科,湖州 313000安徽理工大学附属淮南新华医院脊柱骨科,淮南 232000蚌埠医科大学第一附属医院放射科,蚌埠 233000

临床医学

脊髓型颈椎病放射组学机器学习危险度分级磁共振成像

cervical spondylotic myelopathyradiomicsmachine learningrisk classificationmagnetic resonance imaging

《磁共振成像》 2024 (004)

50-55,77 / 7

Natural Science Research Project of Colleges and Universities in Anhui Province(No.2022AH051473);Key Research and Development Program of Anhui Province(No.2022e07020033). 安徽省高等学校自然科学研究项目(编号:2022AH051473);安徽省重点研究与开发计划项目(编号:2022e07020033)

10.12015/issn.1674-8034.2024.04.009

评论