| 注册
首页|期刊导航|电讯技术|融合残差SENet的毫米波大规模MIMO信道估计

融合残差SENet的毫米波大规模MIMO信道估计

刘庆利 杨国强 张振亚

电讯技术2024,Vol.64Issue(4):512-519,8.
电讯技术2024,Vol.64Issue(4):512-519,8.DOI:10.20079/j.issn.1001-893x.220808001

融合残差SENet的毫米波大规模MIMO信道估计

mmWave Massive MIMO Channel Estimation Fused with Residual SENet

刘庆利 1杨国强 1张振亚1

作者信息

  • 1. 大连大学信息工程学院,辽宁 大连 116622||大连大学通信与网络重点实验室,辽宁 大连 116622
  • 折叠

摘要

Abstract

In the outdoor ray tracing scene,to solve the problem of low estimation accuracy of channel estimation caused by outdoor ambient noise interference in mmWave massive multiple-input multiple-output(MIMO)systems,a channel estimation method based on the Conditional Generative Adversarial Network(CGAN)of fused residual Squeeze-and-Excitation Network(SENet)is proposed.The method uses the CGAN to reconstruct the low resolution received signal into the original signal with high resolution to complete channel estimation.At the same time,SENet is introduced into the generator network to suppress the significant noise interference in the outdoor scene and improve the estimation accuracy.Finally,the residual block in the residual network is added to the scaling operation of the SENet to improve the convergence speed of the CGAN.The simulation results show that compared with that of Orthogonal Matching Pursuit(OMP)algorithm,Convolutional Neural Network(CNN)algorithm,Denoising Convolutional Neural Network(DnCNN)algorithm and CGAN algorithm,the estimation accuracy of the proposed method in outdoor noise environment is improved by about 2.2 dB on average,and the improvement of estimation accuracy is more significant under high noise intensity.

关键词

毫米波大规模MIMO/信道估计/条件生成对抗网络(CGAN)/残差挤压激励网络(SENet)

Key words

millimeter wave massive MIMO/channel estimation/conditional generative adversarial network(CGAN)/squeeze-and-excitation network(SENet)

分类

信息技术与安全科学

引用本文复制引用

刘庆利,杨国强,张振亚..融合残差SENet的毫米波大规模MIMO信道估计[J].电讯技术,2024,64(4):512-519,8.

基金项目

国家自然科学基金资助项目(61931004) (61931004)

电讯技术

OA北大核心CSTPCD

1001-893X

访问量0
|
下载量0
段落导航相关论文