| 注册
首页|期刊导航|电力建设|基于CNN-AE-MAML的低压配电网自适应分类方法

基于CNN-AE-MAML的低压配电网自适应分类方法

陈子靖 蒋金琦 赵健 杨德格 胡陈晨 张凯

电力建设2024,Vol.45Issue(5):48-58,11.
电力建设2024,Vol.45Issue(5):48-58,11.DOI:10.12204/j.issn.1000-7229.2024.05.006

基于CNN-AE-MAML的低压配电网自适应分类方法

Adaptive Classification Method of Low Voltage Distribution Network Based on CNN-AE-MAML

陈子靖 1蒋金琦 1赵健 1杨德格 2胡陈晨 2张凯3

作者信息

  • 1. 上海电力大学电气工程学院,上海市 200090
  • 2. 国网浙江省电力有限公司温州供电公司,浙江省温州市 325000
  • 3. 上海电力大学计算机科学与技术学院,上海市 200090
  • 折叠

摘要

Abstract

The classification of low-voltage distribution network is conducive to improving the efficiency of formulating economic operation management measures and new energy planning operation schemes of low-voltage distribution network.With the continuous access of various new sources of energy,charging piles and other new sources,the original load characteristics of the low-voltage distribution network have changed,which on the one hand leads to complex load characteristics of the distribution network,and on the other hand leads to less available load characteristic data after the change,which brings challenges to the classification of the distribution network.Aiming at the above challenges,this paper proposes an adaptive classification method of low-voltage distribution network based on CNN-AE-MAML.Firstly,convolutional neural network auto encoder(CNN-AE)is used to extract the dimensionality reduction features of the distribution load of low-voltage distribution network and the photovoltaic power generation.Spectral clustering(SC)was used to classify low-voltage distribution networks.Then,the distribution network type identification method based on softmax is constructed to identify the distribution network type by using the dimensional-reduction features of the actual data of low-voltage distribution network.In addition,the model agnostic meta-learning(MAML)method is used to train the CNN-AE feature extraction model,so that the CNN-AE model can adaptively extract the new load features of the distribution network under a small amount of data,and finally achieve accurate and fast adaptive classification of the low-voltage distribution network.

关键词

低压配电网/自适应分类/卷积自编码器/谱聚类/模型不可知元学习

Key words

low-voltage distribution network/adaptive classification/convolutional autoencoder/spectral clustering/model-agnostic meta-learning

分类

信息技术与安全科学

引用本文复制引用

陈子靖,蒋金琦,赵健,杨德格,胡陈晨,张凯..基于CNN-AE-MAML的低压配电网自适应分类方法[J].电力建设,2024,45(5):48-58,11.

基金项目

This work is supported by National Natural Science Foundation of China(No.51907114). 国家自然科学基金项目(51907114) (No.51907114)

电力建设

OA北大核心CSTPCD

1000-7229

访问量0
|
下载量0
段落导航相关论文