| 注册
首页|期刊导航|电力建设|多智能体深度强化学习驱动的跨园区能源交互优化调度

多智能体深度强化学习驱动的跨园区能源交互优化调度

李扬 马文捷 卜凡金 杨震 王彬 韩猛

电力建设2024,Vol.45Issue(5):59-70,12.
电力建设2024,Vol.45Issue(5):59-70,12.DOI:10.12204/j.issn.1000-7229.2024.05.007

多智能体深度强化学习驱动的跨园区能源交互优化调度

Deep Reinforcement Learning-driven Cross-Community Energy Interaction Optimal Scheduling

李扬 1马文捷 1卜凡金 2杨震 3王彬 4韩猛2

作者信息

  • 1. 东北电力大学电气工程学院, 吉林省吉林市 132012
  • 2. 国网淄博供电公司, 山东省淄博市 255022
  • 3. 国网北京市电力公司, 北京市 100032
  • 4. 国网济宁供电公司,山东省济宁市 272000
  • 折叠

摘要

Abstract

In order to coordinate energy interactions among various communities and energy conversions among multi-energy subsystems within the multi-community integrated energy system under uncertain conditions,and achieve overall optimization and scheduling of the comprehensive energy system,this paper proposes a comprehensive scheduling model that utilizes a multi-agent deep reinforcement learning algorithm to learn load characteristics of different communities and make decisions based on this knowledge.In this model,the scheduling problem of the integrated energy system is transformed into a Markov decision process and solved using a data-driven deep reinforcement learning algorithm,which avoids the need for modeling complex energy coupling relationships between multi-communities and multi-energy subsystems.The simulation results show that the proposed method effectively captures the load characteristics of different communities and utilizes their complementary features to coordinate reasonable energy interactions among them.This leads to a reduction in wind curtailment rate from 16.3%to 0%and lowers the overall operating cost by 5445.6 Yuan,demonstrating significant economic and environmental benefits.

关键词

多智能体深度强化学习/综合能源系统/优化调度/可再生能源消纳/负荷特征学习/多园区能量交互

Key words

multi-agent deep reinforcement learning/integrated energy system/optimal scheduling/renewable energy consumption/load characteristic learning/energy interaction among communities

分类

信息技术与安全科学

引用本文复制引用

李扬,马文捷,卜凡金,杨震,王彬,韩猛..多智能体深度强化学习驱动的跨园区能源交互优化调度[J].电力建设,2024,45(5):59-70,12.

基金项目

This work is supported by Natural Science Foundation of Jilin Province(No.YDZJ202101ZYTS149). 吉林省自然科学基金项目(YDZJ202101ZYTS149) (No.YDZJ202101ZYTS149)

电力建设

OA北大核心CSTPCD

1000-7229

访问量7
|
下载量0
段落导航相关论文