| 注册
首页|期刊导航|电力系统及其自动化学报|基于遗传优化聚类的GRU无损电力监测数据压缩

基于遗传优化聚类的GRU无损电力监测数据压缩

屈志坚 帅诚鹏 吴广龙 梁家敏 李迪

电力系统及其自动化学报2024,Vol.36Issue(4):1-8,18,9.
电力系统及其自动化学报2024,Vol.36Issue(4):1-8,18,9.DOI:10.19635/j.cnki.csu-epsa.001248

基于遗传优化聚类的GRU无损电力监测数据压缩

GRU Neural Network Lossless Compression of Power Monitoring Data Based on Genetic Optimization Clustering

屈志坚 1帅诚鹏 1吴广龙 1梁家敏 1李迪1

作者信息

  • 1. 华东交通大学轨道交通基础设施性能监测与保障国家重点实验室,南昌 330013||华东交通大学电气与自动化工程学院,南昌 330013
  • 折叠

摘要

Abstract

Aimed at the problems of large volume and difficult storage of monitoring data records at power dispatching centers,a gated recurrent unit(GRU)neural network lossless data compression method based on genetic optimization K-means clustering is proposed.First,a distributed cluster is built to cluster the multi-dimensional raw power data into data blocks with a high similarity,in which the genetic algorithm is used to find the best cluster and improve the effect of data clustering.Then,the probability distribution model of data coding is trained by the GRU neural network,and the data is coded and compressed by combining with arithmetic coding.Finally,several power datasets are analyzed as examples to show that the proposed compression algorithm can achieve high proportional compression of data and opti-mize the clustering performance.

关键词

电力数据/遗传算法/聚类分析/循环神经网络/分布式集群压缩

Key words

power data/genetic algorithm/clustering analysis/recurrent neural network(RNN)/distributed cluster compression

分类

信息技术与安全科学

引用本文复制引用

屈志坚,帅诚鹏,吴广龙,梁家敏,李迪..基于遗传优化聚类的GRU无损电力监测数据压缩[J].电力系统及其自动化学报,2024,36(4):1-8,18,9.

基金项目

江西省自然科学基金重点项目(20232ACB204025) (20232ACB204025)

江西省高层次高技能领军人才培养工程资助项目(202223323) (202223323)

轨道交通基础设施性能监测与保障国家重点实验室开放课题资助项目(HJGZ2022203) (HJGZ2022203)

电力系统及其自动化学报

OA北大核心CSTPCD

1003-8930

访问量0
|
下载量0
段落导航相关论文