| 注册
首页|期刊导航|电力信息与通信技术|基于图表示学习与知识蒸馏的电缆故障快速识别方法

基于图表示学习与知识蒸馏的电缆故障快速识别方法

余盛灿 余涛 陈鑫沛 杨家俊 潘振宁

电力信息与通信技术2024,Vol.22Issue(4):11-20,10.
电力信息与通信技术2024,Vol.22Issue(4):11-20,10.DOI:10.16543/j.2095-641x.electric.power.ict.2024.04.02

基于图表示学习与知识蒸馏的电缆故障快速识别方法

A Fast Cable Fault Identification Method Based on Graph Representation Learning and Knowledge Distillation

余盛灿 1余涛 1陈鑫沛 1杨家俊 1潘振宁1

作者信息

  • 1. 华南理工大学电力学院,广东省 广州市 510641
  • 折叠

摘要

Abstract

In the early warning of equipment failures in traction power supply systems,accurate and rapid identification of early cable failures is a key technology for intelligent operation and maintenance.In order to mine the deep information of feature construction and solve the problem of engineering deployment iteration rate,this paper proposes a cable fault identification method based on graph representation learning and knowledge distillation.First,the current signal of the cable is sampled and analyzed,and the feature information under the time series is dynamically displayed and updated with graph features.The convolutional autoencoder is used to reconstruct the feature image with noise reduction,and then the graph convolution neural network based on knowledge distillation is used.The network identification algorithm builds a teacher-student network fault identification model.The study builds a cable fault model in the PSCAD simulation environment to collect overcurrent disturbance signals,and proves the effectiveness and accuracy of the model through experimental comparisons,and greatly improves the model iteration rate,and at the same time enhances the robustness under noise disturbances,and has engineering application value.

关键词

电缆早期故障/卷积自编码器/图表示学习/知识蒸馏

Key words

cable early fault/convolutional auto-encoder/graph representation learning/knowledge distillation

分类

信息技术与安全科学

引用本文复制引用

余盛灿,余涛,陈鑫沛,杨家俊,潘振宁..基于图表示学习与知识蒸馏的电缆故障快速识别方法[J].电力信息与通信技术,2024,22(4):11-20,10.

基金项目

国家自然科学基金项目(52207105). (52207105)

电力信息与通信技术

OACSTPCD

1672-4844

访问量0
|
下载量0
段落导航相关论文