|国家科技期刊平台
首页|期刊导航|防灾减灾工程学报|基于神经网络的跨越地裂缝框架结构地震损伤及预测研究

基于神经网络的跨越地裂缝框架结构地震损伤及预测研究OA北大核心CSTPCD

Seismic Damage Analysis of Frame Structures Spanning Ground Fissures Based on Neural Network

中文摘要英文摘要

为开展特殊地质环境下结构的损伤分析,以一跨越西安f4地裂缝的五层框架结构为研究对象,基于振动台试验和ABAQUS有限元分析结果,进行了BP神经网络模型的模型训练,选取变形和能量组合形式的双参数损伤模型计算结构损伤指标,采用加权系数法,开展了构件、楼层、结构三个层面的损伤预测分析,给出了不同地震作用下结构损伤程度评估.结果表明:地裂缝场地结构表现出明显上下盘效应,结构首层为薄弱层.BP神经网络损伤预测值与有限元计算值在不同工况下均较为一致,其对于构件、层间、整体结构损伤指数预测最大误差分别为8.86%、5.66%、7.57%,该研究成果为跨越地裂缝结构的性能评估提供一种准确且高效的研究方法.

To carry out structural damage analysis on structures under special geological conditions,a five-story frame structure spanning the f4 ground fissure in Xi'an was taken as the research object.Based on the results from shaking table tests and ABAQUS finite element analysis,a BP neural net-work model was trained.A two-parameter damage model combining deformation and energy was em-ployed to calculate structural damage index.The weighted coefficient method was used to carry out the damage prediction analysis of components,floors,and structures,providing evaluations of struc-tural damage under different seismic impacts.The results showed that the structure on the ground fis-sure site exhibited a significant hanging-wall/footwall effect,with the first layer being the weak layer.The BP neural network's damage prediction values closely aligned with the finite element calculation values across different conditions.The maximum prediction errors for components,inter-layer,and overall structural damage indices were 8.86%,5.66%,and 7.57%,respectively.

熊仲明;熊俊龙;王泽坤;陈轩

西安建筑科技大学土木工程学院,陕西 西安 710055||西安建筑科技大学结构工程与抗震教育部重点实验室,陕西 西安 710055||陕西省结构与抗震重点实验室,陕西 西安 710055西北政法大学基建处,陕西 西安 710122

土木建筑

地裂缝框架结构数值分析神经网络损伤预测

ground fissureframe structurenumerical analysisneural networksdamage prediction

《防灾减灾工程学报》 2024 (002)

362-371 / 10

国家自然基金面上项目(51278395)、陕西省自然基金重点项目(2022JZ-23)资助

10.13409/j.cnki.jdpme.20221209002

评论