| 注册
首页|期刊导航|发光学报|机器学习辅助钙钛矿薄膜制备工艺优化及特征重要性评估

机器学习辅助钙钛矿薄膜制备工艺优化及特征重要性评估

弓箭 陈谦 李阳 马梦恩 马玉姣 吴绍航 刘冲 麦耀华

发光学报2024,Vol.45Issue(3):399-406,8.
发光学报2024,Vol.45Issue(3):399-406,8.DOI:10.37188/CJL.20230309

机器学习辅助钙钛矿薄膜制备工艺优化及特征重要性评估

Machine Learning Assisted Optimization of Perovskite Thin Film Fabrication Process and Assessment of Feature Importance

弓箭 1陈谦 1李阳 1马梦恩 2马玉姣 2吴绍航 2刘冲 2麦耀华2

作者信息

  • 1. 五邑大学 智能制造学部,广东 江门 529020
  • 2. 暨南大学 物理与光电工程学院,广东 广州 510632
  • 折叠

摘要

Abstract

The efficiency of perovskite solar cells has been improved to 26.1%in just ten years,which is very close to the certification efficiency of crystalline silicon solar cells(26.81%).This demonstrates the significant po-tential for industrialization.Currently,efforts are still being made to further enhance the efficiency of perovskite solar cells.However,various inseparable factors affect the performance of perovskite solar cells during the device prepara-tion process.Traditional methods often rely on trial and error to optimize the preparation process,resulting in time-consuming procedures.Bayesian optimization,a global optimization algorithm,has achieved remarkable success in addressing artificial intelligence,s black box problem.In this work,the Bayesian optimization is employed to opti-mize four key process parameters involved in the perovskite layer:excess percentage of lead iodide(PbI2),anneal-ing temperature,annealing time,and vacuum extraction time.The costs of research and development have been sig-nificantly reduced,as well as the required time for such activities has also been shortened.The improvement was achieved through five rounds of experimental iterations and 34 sets of process conditions,ultimately resulting in the preparation of an inverse perovskite solar cell with a device efficiency rating of 23.56%.

关键词

钙钛矿太阳能电池/机器学习/工艺优化/高效率

Key words

perovskite solar cells/machine learning/process optimization/high efficiency

分类

数理科学

引用本文复制引用

弓箭,陈谦,李阳,马梦恩,马玉姣,吴绍航,刘冲,麦耀华..机器学习辅助钙钛矿薄膜制备工艺优化及特征重要性评估[J].发光学报,2024,45(3):399-406,8.

基金项目

广东省重点领域研发计划项目(2019B010132004) (2019B010132004)

国家自然科学基金(62104082,62005099):广东省基础与应用基础研究基金(2022A1515010746,2022A1515011228) (62104082,62005099)

广州市科技计划(202201010458,202201010542)Supported by The Key Realm R&D Program of Guangdong Province(2019B010132004) (202201010458,202201010542)

National Natural Science Foundation of China(62104082,62005099) (62104082,62005099)

Guangdong Basic and Applied Basic Research Foundation(2022A1515010746,2022A1515011228) (2022A1515010746,2022A1515011228)

Science and Technology Program of Guangzhou(202201010458,202201010542) (202201010458,202201010542)

发光学报

OA北大核心CSTPCD

1000-7032

访问量0
|
下载量0
段落导航相关论文