| 注册
首页|期刊导航|光学精密工程|基于自适应近邻信息的模糊C均值聚类算法

基于自适应近邻信息的模糊C均值聚类算法

高云龙 李建鹏 郑兴莘 邵桂芳 祝青园 曹超

光学精密工程2024,Vol.32Issue(7):1045-1058,14.
光学精密工程2024,Vol.32Issue(7):1045-1058,14.DOI:10.37188/OPE.20243207.1045

基于自适应近邻信息的模糊C均值聚类算法

Fuzzy C-means clustering algorithm based on adaptive neighbors information

高云龙 1李建鹏 2郑兴莘 1邵桂芳 1祝青园 1曹超3

作者信息

  • 1. 厦门大学 萨本栋微米纳米科学技术研究院,福建 厦门 361102
  • 2. 厦门大学 自动化系,福建 厦门 361102
  • 3. 自然资源部 第三海洋研究所,福建 厦门 361005
  • 折叠

摘要

Abstract

Traditional FCM algorithms cluster based on raw data,risking distortion from noise,outliers,or other disruptions,which can degrade clustering outcomes.To bolster FCM's resilience,this study intro-duces a fuzzy C-means clustering algorithm that leverages adaptive neighbor information.This concept hinges on the similarity between data points,treating each point as a potential neighbor to others,albeit with varying degrees of similarity.By integrating the neighbor information of sample points,labeled GX,and that of cluster centers,labeled GV,into the standard FCM framework,the algorithm gains additional insights into data structure.This aids in steering the clustering process and enhances the algorithm's robust-ness.Three iterative methods are presented to implement this enhanced clustering model.When com-pared to leading clustering techniques,our approach demonstrates over a 10%improvement in cluster-ing efficacy on select benchmark datasets.It undergoes thorough evaluation across different dimen-sions,including parameter sensitivity,convergence rate,and through ablation studies,confirming its practicality and efficiency.

关键词

模糊C均值聚类/自适应近邻/算法鲁棒性/迭代算法

Key words

fuzzy C-means clustering/adaptive neighbors/algorithm robustness/iterative algorithm

分类

计算机与自动化

引用本文复制引用

高云龙,李建鹏,郑兴莘,邵桂芳,祝青园,曹超..基于自适应近邻信息的模糊C均值聚类算法[J].光学精密工程,2024,32(7):1045-1058,14.

基金项目

国家自然科学基金资助项目(No.42076058,No.52075461) (No.42076058,No.52075461)

福建省自然科学基金资助项目(No.2020J01713,No.2022J01061) (No.2020J01713,No.2022J01061)

光学精密工程

OA北大核心CSTPCD

1004-924X

访问量0
|
下载量0
段落导航相关论文