| 注册
首页|期刊导航|广西师范大学学报(自然科学版)|基于动态生成对抗网络的路网缺失交通数据修复

基于动态生成对抗网络的路网缺失交通数据修复

许伦辉 李金龙 李若南 陈俊宇

广西师范大学学报(自然科学版)2024,Vol.42Issue(2):30-40,11.
广西师范大学学报(自然科学版)2024,Vol.42Issue(2):30-40,11.DOI:10.16088/j.issn.1001-6600.2023051402

基于动态生成对抗网络的路网缺失交通数据修复

Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network

许伦辉 1李金龙 2李若南 3陈俊宇2

作者信息

  • 1. 广东科技学院计算机学院,广东东莞 523083||华南理工大学土木与交通学院,广东广州 510641
  • 2. 华南理工大学土木与交通学院,广东广州 510641
  • 3. 哈尔滨工业大学(深圳)计算机科学与技术学院,广东深圳 518055
  • 折叠

摘要

Abstract

For the issue of missing data occurring in the data collection process of intelligent transportation systems,a road network traffic data recovery model is proposed in this paper based on the dynamic generative adversarial network.Firstly,the approach in this paper are constructed various missing traffic data matrices by considering the spatial-temporal properties of traffic data and the set missing patterns and missing rates.Then iteratively trains a GAN was composed of two fully connected neural networks based on a game idea.By introducing a novel dynamic adaptive mechanism,this study can automatically identify the optimal number of iterations of the generator and discriminator during the model computation,and finally generates the complete traffic data matrix and repair the missing values.California PeMS and Guangzhou traffic speed datasets are used to complete the D-GAN model construction,and multiple evaluation metrics are employed to assess the repair performance of D-GAN.Experimental results show that the repair accuracy of D-GAN is higher for random missing patterns compared with non-random missing patterns;and the repair accuracy of D-GAN degrades accelerated with increasing missing rates.However,the repair performance of D-GAN outperforms the baseline models(e.g.,BGCP,prophet-RF,and GAIN)under various missing conditions.

关键词

智能交通系统/交通数据修复/生成对抗网络/博弈思想/动态自适应机制

Key words

intelligent transportation systems/traffic data recovery/generative adversarial network/game idea/dynamic adaptive mechanism

分类

交通工程

引用本文复制引用

许伦辉,李金龙,李若南,陈俊宇..基于动态生成对抗网络的路网缺失交通数据修复[J].广西师范大学学报(自然科学版),2024,42(2):30-40,11.

基金项目

国家自然科学基金(52072130) (52072130)

广东省普通高校重点领域专项(2021ZDZX1077) (2021ZDZX1077)

广东省重点建设学科科研能力提升项目(2021ZDJS116) (2021ZDJS116)

广西师范大学学报(自然科学版)

OA北大核心CSTPCD

1001-6600

访问量0
|
下载量0
段落导航相关论文