| 注册
首页|期刊导航|广西师范大学学报(自然科学版)|基于跨模态交叉注意力网络的多模态情感分析方法

基于跨模态交叉注意力网络的多模态情感分析方法

王旭阳 王常瑞 张金峰 邢梦怡

广西师范大学学报(自然科学版)2024,Vol.42Issue(2):84-93,10.
广西师范大学学报(自然科学版)2024,Vol.42Issue(2):84-93,10.DOI:10.16088/j.issn.1001-6600.2023052701

基于跨模态交叉注意力网络的多模态情感分析方法

Multimodal Sentiment Analysis Based on Cross-Modal Cross-Attention Network

王旭阳 1王常瑞 1张金峰 1邢梦怡2

作者信息

  • 1. 兰州理工大学计算机与通信学院,甘肃兰州 730050
  • 2. 兰州理工大学机电工程学院,甘肃兰州 730050
  • 折叠

摘要

Abstract

Exploiting intra-modal and inter-modal information is helpful for improving the performance of multimodal sen-timent analysis.So,a multimodal sentiment analysis based on cross-modal cross-attention network is proposed.Firstly,VGG-16 network is utilized to map the multimodal data into the global feature space.Simultaneously,the Swin Transformer network is used to map the multimodal data into the local feature space.And the intra-modal self-attention and inter-modal cross-attention features are constructed.Then,a cross-modal cross-attention fusion module is designed to achieve the deep fusion of the intra-modal and inter-modal features,enhancing the represen-tation reliability of the multimodal feature.Finally,the softmax function is used to obtain the results of the sentiment analysis.The experimental results on two open source datasets CMU-MOSI and CMU-MSOEI show that the proposed model can achieve an accuracy of 45.9%and 54.1%respectively in the seven-classification task.Compared with the current classical MCGMF model,the accuracy of the proposed model has improved by 0.66%and 2.46%,and the overall performance improvement is significant.

关键词

情感分析/多模态/跨模态交叉注意力/自注意力/局部和全局特征

Key words

sentiment analysis/multimodal/cross-modal cross-attention/self-attention/global and local feature

分类

计算机与自动化

引用本文复制引用

王旭阳,王常瑞,张金峰,邢梦怡..基于跨模态交叉注意力网络的多模态情感分析方法[J].广西师范大学学报(自然科学版),2024,42(2):84-93,10.

基金项目

国家自然科学基金(62161019) (62161019)

广西师范大学学报(自然科学版)

OA北大核心CSTPCD

1001-6600

访问量0
|
下载量0
段落导航相关论文