| 注册
首页|期刊导航|哈尔滨工程大学学报|基于在线海流数据的自然能驱动无人艇能源最优路径规划

基于在线海流数据的自然能驱动无人艇能源最优路径规划

李可 廖煜雷 刘骁锋 贾琪 李相杰 翟子正

哈尔滨工程大学学报2024,Vol.45Issue(3):441-449,9.
哈尔滨工程大学学报2024,Vol.45Issue(3):441-449,9.DOI:10.11990/jheu.202209016

基于在线海流数据的自然能驱动无人艇能源最优路径规划

Energy-saving optimal path planning algorithm for natural energy-driven unmanned surface vehicle based on o-line monitoring current data

李可 1廖煜雷 2刘骁锋 1贾琪 1李相杰 1翟子正1

作者信息

  • 1. 哈尔滨工程大学 智能海洋航行器技术全国重点实验室,黑龙江 哈尔滨 150001
  • 2. 哈尔滨工程大学 智能海洋航行器技术全国重点实验室,黑龙江 哈尔滨 150001||哈尔滨工程大学 三亚南海创新发展基地,海南 三亚 572000
  • 折叠

摘要

Abstract

In this paper,an energy-saving optimal path planning algorithm is proposed based on online monitoring current data,taking wave rider unmanned surface vehicle driven by natural energy as the object of study.The goal is to reduce energy consumption and increase the endurance of natural energy-driven unmanned surface vehicles(NS-Vs)by effectively using the online monitoring current and wind data during the voyage.Particle swarm optimization(PSO)is improved by the wave rider's minimum radius of gyration,which is obtained from real ship tests.Then,the distance optimal path planning algorithm(DOPSO)is proposed,and an energy consumption model is established,considering the influence of current and wind on the energy consumption of the wave rider.To reach the energy opti-mal objective,the PSO is improved in a static current environment,and energy optimal particle swarm optimization(EOPSO)is explored.Dynamic current data are also obtained based on the online monitoring current and wind infor-mation obtained during the navigation of the wave rider.Upon optimizing the EOPSO,the energy-saving optimal path planning algorithm based on online monitoring current(OCPSO)is proposed.The energy consumption rates of DOP-SO and OCPSO in the same working conditions are compared via simulation tests to verify the feasibility and effective-ness of the algorithm.

关键词

自然能驱动无人艇/在线海流数据/环境建模/能源最优/路径规划/粒子群算法

Key words

driven by natural energy/online current data/environment modeling/optimal energy/path planning/parti-cle swarm optimization

引用本文复制引用

李可,廖煜雷,刘骁锋,贾琪,李相杰,翟子正..基于在线海流数据的自然能驱动无人艇能源最优路径规划[J].哈尔滨工程大学学报,2024,45(3):441-449,9.

基金项目

国家自然科学基金项目(52071097) (52071097)

海南省自然科学基金项目(522MS162) (522MS162)

智能海洋航行器技术全国重点实验室研究基金项目(2024-HYHXQ-WDZC01). (2024-HYHXQ-WDZC01)

哈尔滨工程大学学报

OA北大核心CSTPCD

1006-7043

访问量0
|
下载量0
段落导航相关论文